In this study, we experimentally addressed the impact of different pollination treatments on the morphological, reproductive and chemical traits of fruits and seeds of two crop species, the wild strawberry (Fragaria vesca L.) and cowpea (Vigna unguiculata (L.) Walp.
View Article and Find Full Text PDFOne of the most vulnerable phases in the plant life cycle is sexual reproduction, which depends on effective pollen transfer, but also on the thermotolerance of pollen grains. Pollen thermotolerance is temperature-dependent and may be reduced by increasing temperature associated with global warming. A growing body of research has focused on the effect of increased temperature on pollen thermotolerance in crops to understand the possible impact of temperature extremes on yield.
View Article and Find Full Text PDFBackground: The area sourrounding the Mediterranean basin is recognised as a major biodiversity hotspot for bees, and Italy is amongst the European countries with the highest bee species richness. Detailed knowledge of bee distribution is crucial for understanding bee biology and designing tailored conservation strategies, but is still insufficient in southern European countries, especially in Italy.
New Information: We report recent finds of 48 bee species that yield significant novelties for the Italian bee fauna.
Plant biodiversity is crucial to satisfy the trophic needs of pollinators, mainly through nectar and pollen rewards. However, a few studies have been directed to ascertain the intraspecific variation of chemical features and the nutritional value of nectar and pollen floral rewards in relation to the alteration of landscapes due to human activities. In this study, by using an existing scenario of land use gradients as an open air laboratory, we tested the variation in pollen and nectar nutrient profiles along gradients of urbanization and agriculture intensity, by focusing on sugar, aminoacids of nectar and phytochemicals of pollen from local wild plants.
View Article and Find Full Text PDFUrbanization and the expansion of human activities foster radical ecosystem changes with cascading effects also involving host-pathogen interactions. Urban pollinator insects face several stressors related to landscape and local scale features such as green habitat loss, fragmentation and availability reduction of floral resources with unpredictable effects on parasite transmission. Furthermore, beekeeping may contribute to the spread of parasites to wild pollinators by increasing the number of parasite hosts.
View Article and Find Full Text PDF