Spectrochim Acta A Mol Biomol Spectrosc
August 2024
The application of Near Infrared (NIR) spectroscopy for analyzing wet feed directly on farms is increasingly recognized for its role in supporting harvest-time decisions and refining the precision of animal feeding practices. This study aims to evaluate the accuracy of NIR spectroscopy calibrations for both undried, unprocessed samples and dried, ground samples. Additionally, it investigates the influence of the bases of reference data (wet vs.
View Article and Find Full Text PDFThe aims of this proof of principle study were to compare two different chemometric approaches using a Bayesian method, Partial Least Square (PLS) and PLS-discriminant analysis (DA), for the prediction of the chemical composition and texture properties of the Grana Padano (GP) and Parmigiano Reggiano (PR) PDO cheeses by using NIR and Raman spectra and quantify their ability to distinguish between the two PDO and among their ripening periods. For each dairy chain consortium, 9 cheese samples from 3 dairy industries were collected for a total of 18 cheese samples. Three seasoning times were chosen for each dairy industry: 12, 20, and 36 months for GP and 12, 24, and 36 months for PR.
View Article and Find Full Text PDFThe prediction of the cheese yield (%CY) traits for curd, solids, and retained water and the amount of fat, protein, solids, and energy recovered from the milk into the curd (%REC) by Bayesian models, using Fourier-transform infrared spectroscopy (FTIR), can be of significant economic interest to the dairy industry and can contribute to the improvement of the cheese process efficiency. The yields give a quantitative measure of the ratio between weights of the input and output of the process, whereas the nutrient recovery allows to assess the quantitative transfer of a component from milk to cheese (expressed in % of the initial weight). The aims of this study were: (1) to investigate the feasibility of using bulk milk spectra to predict %CY and %REC traits, and (2) to quantify the effect of the dairy industry and the contribution of single-spectrum wavelengths on the prediction accuracy of these traits using vat milk samples destined to the production of Grana Padano Protected Designation of Origin cheese.
View Article and Find Full Text PDFFood fraud in olive oil is a major concern for consumers and authorities due to the health risks and economic impacts. Common frauds include blending with other cheaper non-olive oils, or misleading labelling. The main issue is that legislation and methods presently used in routine laboratories are not always up to date with current fraudulent practices, making detection difficult, so new analytical methods development is required.
View Article and Find Full Text PDFSubstantial research has been carried out on rapid, nondestructive, and inexpensive techniques for predicting cheese composition using spectroscopy in the visible and near-infrared radiation range. Moreover, in recent years, new portable and handheld spectrometers have been used to predict chemical composition from spectra captured directly on the cheese surface in dairies, storage facilities, and food plants, removing the need to collect, transport, and process cheese samples. For this review, we selected 71 papers (mainly dealing with prediction of the chemical composition of cheese) and summarized their results, focusing our attention on the major sources of variation in prediction accuracy related to cheese variability, spectrometer and spectra characteristics, and chemometrics techniques.
View Article and Find Full Text PDF