Background: There are limited data on the physical effects of androgen deprivation therapy (ADT) for prostate cancer (PC), and on the relationships of such measures of adiposity and strength to cardiovascular outcomes.
Objectives: The primary objective of this study was to evaluate the relationships of measures of adiposity and strength to cardiovascular outcomes (cardiovascular death, myocardial infarction, stroke, heart failure, arterial revascularization, peripheral arterial disease, and venous thromboembolism) in patients with PC. A secondary objective was to characterize the relationships between ADT use and 12-month changes in these physical measures.
Boron-incorporated nanosized HB-SUZ-4 showcased a noteworthy 24% boost in dimethyl ether carbonylation, with an elevation in methyl acetate selectivity from 91.8% to 96.0%.
View Article and Find Full Text PDFBackground: Targeted nanoparticles (NPs) are aimed at improving clinical outcomes by enhancing the diagnostic and therapeutic efficacy of drugs in the treatment of Alzheimer's disease (AD).
Methods: Curcumin (CUR)-loaded poly-lactic-co-glycolic acid (PLGA) NPs (CNPs) were produced to demonstrate a prolonged release and successfully embedded into 3D printed sodium alginate (SA)/gelatin (GEL) scaffolds that can dissolve rapidly sublingually. Characterization and in vitro activity of the NPs and scaffolds were evaluated.
J Cancer Res Clin Oncol
April 2024
Purpose: Renal cell carcinoma is an aggressive disease with a high mortality rate. Management has drastically changed with the new era of immunotherapy, and novel strategies are being developed; however, identifying systemic treatments is still challenging. This paper presents an update of the expert panel consensus from the Latin American Cooperative Oncology Group and the Latin American Renal Cancer Group on advanced renal cell carcinoma management in Brazil.
View Article and Find Full Text PDFMordenite (MOR) zeolite, an important industrial catalyst exists in two, isostructural variants defined by their port-size, small and large-port. Here we show for the first time how a systematic, single-parameter variation influences the synthesis out-come on the final MOR material leading to distinctly different catalysts. The cation identity has a direct impact on the synthesis mechanism with potassium cations generating the more constrained, small-port MOR variant compared to the large-port obtained with sodium cations.
View Article and Find Full Text PDF