Publications by authors named "P Bazant"

This study deals with the effect of zinc oxide (ZnO) star-like filler addition to the poly(vinylidene fluoride) (PVDF) matrix, and its effect on the structural and physical properties and consequences to the vibration sensing performance. Microwave-assisted synthesis in open vessel setup was optimized for the preparation of the star-like shape of ZnO crystalline particles. The crystalline and star-like structure was confirmed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDX).

View Article and Find Full Text PDF

This work focuses on an inkjet-fabricated sensor based on copper oxide nanostructured particles on polymer flexible substrate for the sensing of alcohol vapours and humidity at room temperature. Nanoparticles were prepared by a microwave-assisted solvothermal sealed vessel synthesis method. The ink composition was developed on the basis of viscosity and surface tension optimization by the addition of polymeric steric surfactant and dispersant.

View Article and Find Full Text PDF

This study serves to combine two approaches into one single step, to achieve a significant improvement of the light-induced actuation capabilities. Graphene oxide (GO) is an inert material, from the electrical and thermal conductivity point of view, and is incompatible with the usually-used poly(dimethylsiloxane) (PDMS) matrix. During surface-modification by surface-initiated atom transfer radical polymerization, the GO was transformed into a conducting and compatible material with the PDMS showing enormous light-induced actuation capability.

View Article and Find Full Text PDF

In this study, a hybrid Ag-ZnO nanostructured micro-filler was synthesized by the drop technique for used in plastic and medical industry. Furthermore, new antibacterial polymer nanocomposites comprising particles of Ag-ZnO up to 5 wt % and a blend of a thermoplastic polyolefin elastomer (TPO) with polypropylene were prepared using twin screw micro-compounder. The morphology and crystalline-phase structure of the hybrid Ag-ZnO nanostructured microparticles obtained was characterized by scanning electron microscopy and powder X-ray diffractometry.

View Article and Find Full Text PDF

Magnetic nanoparticles based on Fe3O4 were prepared by a facile and rapid one-pot solvothermal synthesis using FeCl3·6H2O as a source of iron ions, ethylene glycol as a solvent and NH4Ac, (NH4)2CO3, NH4HCO3 or aqueous NH3 as precipitating and nucleating agents. In contrast to previous reports we reduce the synthesis time to 30 minutes using a pressurized microwave reactor without the requirement of further post-treatments such as calcination. Dramatically reduced synthesis time prevents particle growth via Ostwald ripening thus the obtained particles have dimensions in the range of 20 to 130 nm, they are uniform in shape and exhibit magnetic properties with saturation magnetization ranging from 8 to 76 emu g(-1).

View Article and Find Full Text PDF