Gastrointestinal tract-related cancers pose a significant health burden, with high mortality rates. In order to detect the anomalies of the gastrointestinal tract that may progress to cancer, a video capsule endoscopy procedure is employed. The number of video capsule endoscopic ( ) images produced per examination is enormous, which necessitates hours of analysis by clinicians.
View Article and Find Full Text PDFUnderstanding human behavior and human action recognition are both essential components of effective surveillance video analysis for the purpose of guaranteeing public safety. However, existing approaches such as three-dimensional convolutional neural networks (3D CNN) and two-stream neural networks (2SNN) have computational hurdles due to the significant parameterization they require. In this paper, we offer HARNet, a specialized lightweight residual 3D CNN that is built on directed acyclic graphs and was created expressly to handle these issues and achieve effective human action detection.
View Article and Find Full Text PDFBackground: In neurodegenerative disease such as Alzheimer's disease and stroke, the brain transitions to pro-inflammatory profile, where microglia and T-cells in the brain have increase inflammatory profiles, along with increased Kv1.3 potassium channel abundance. Pharmacological blockade of Kv1.
View Article and Find Full Text PDFBackground: Our group has developed the innovative proximity labeling cell-type specific in vivo biotinylation of proteins (CIBOP) approach to quantify cell-specific in vivo proteomic and transcriptomic signatures that may lead to identify novel therapeutic targets for Alzheimer's disease (AD) pathogenesis. CIBOP uses TurboID, a biotin ligase, selectively expressed in the cell type of interest using a conditional Cre/lox genetic strategy to label the cytosolic proteome. Using mass spectrometry (MS)-based proteomics, we have found that TurboID biotinylates many RNA-binding and ribosomal proteins.
View Article and Find Full Text PDFBackground: Neuroinflammation plays a critical role in Alzheimer's disease pathogenesis. Neurons are anatomically divided in subcellular compartments (axons, soma, and synapses), which may be distinctly impacted by neuroinflammation. This study aims to examine cellular compartment-specific proteomic signatures in excitatory neurons following a systemic neuroinflammatory stress.
View Article and Find Full Text PDF