High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the eventwise average transverse momentum [P([p_{T}])]. Disentangling the contributions from fluctuations in the nuclear overlap size (geometrical component) and other sources at a fixed size (intrinsic component) remains a challenge. This problem is addressed by measuring the mean, variance, and skewness of P([p_{T}]) in ^{208}Pb+^{208}Pb and ^{129}Xe+^{129}Xe collisions at sqrt[s_{NN}]=5.
View Article and Find Full Text PDFCofacial arrangement of two Blatter radicals enforced by the -naphthalene scaffold represents a new approach to stable diradicals with strong through-space interactions. Two stereoisomers of the naphthalene-diradicals, and , are investigated by XRD, VT-EPR, UV-vis, electrochemical, kinetic, and DFT methods. In solutions, both stereoisomers exist as open-shell singlets with Δ = -3.
View Article and Find Full Text PDFAtomistic molecular dynamics (MD) simulations are a much-used tool for investigating the structure and dynamics of biomembranes with atomic resolution. The validity of the representations obtained is determined by the accuracy and realism of the MD model (force field). Here, we evaluated the proprietary OPLS4 force field of Schrödinger, Inc.
View Article and Find Full Text PDFThe research suggests a production method of insulating composites created from lignocellulosic agricultural biomass with fungal mycelium as a binder agent and offers a deeper investigation of their thermophysical properties. Particularly, the samples were meticulously evaluated for density and thermal conductivity. The function was built on the suggestion by the authors regarding the thermal conductivity-weight ratio indicator.
View Article and Find Full Text PDFA search for the exclusive hadronic decays W^{±}→π^{±}γ, W^{±}→K^{±}γ, and W^{±}→ρ^{±}γ is performed using up to 140 fb^{-1} of proton-proton collisions recorded with the ATLAS detector at a center-of-mass energy of sqrt[s]=13 TeV. If observed, these rare processes would provide a unique test bench for the quantum chromodynamics factorization formalism used to calculate cross sections at colliders. Additionally, at future colliders, these decays could offer a new way to measure the W boson mass through fully reconstructed decay products.
View Article and Find Full Text PDF