The core promoter plays a central role in setting metazoan gene expression levels, but how exactly it "computes" expression remains poorly understood. To dissect its function, we carried out a comprehensive structure-function analysis in Drosophila. First, we performed a genome-wide bioinformatic analysis, providing an improved picture of the sequence motifs architecture.
View Article and Find Full Text PDFThe DNA of eukaryotes is wrapped around histone octamers to form nucleosomes. Although it is well established that the DNA sequence significantly influences nucleosome formation, its precise contribution has remained controversial, partially owing to the lack of quantitative affinity data. Here, we present a method to measure DNA-histone binding free energies at medium throughput and with high sensitivity.
View Article and Find Full Text PDFAccurate quantification of transcription factor (TF)-DNA interactions is essential for understanding the regulation of gene expression. Since existing approaches suffer from significant limitations, we have developed a new method for determining TF-DNA binding affinities with high sensitivity on a large scale. The assay relies on the established fluorescence anisotropy (FA) principle but introduces important technical improvements.
View Article and Find Full Text PDFIn the original version of this Article, equation three contained a sign error whereby the term RT was added when it should have been subtracted. This has now been corrected in the PDF and HTML versions of the Article.
View Article and Find Full Text PDFThe complex patterns of gene expression in metazoans are controlled by selective binding of transcription factors (TFs) to regulatory DNA. To improve the quantitative understanding of this process, we have developed a novel method that uses fluorescence anisotropy measurements in a controlled delivery system to determine TF-DNA binding energies in solution with high sensitivity and throughput. Owing to its large dynamic range, the method, named high performance fluorescence anisotropy (HiP-FA), allows for reliable quantification of both weak and strong binding; binding specificities are calculated on the basis of equilibrium constant measurements for mutational DNA variants.
View Article and Find Full Text PDF