Three new soluble small molecules (B, B6, and A) with a low band gap based on 2-styryl-5-phenylazo-pyrrole were synthesized. Molecules B and B6 contained pyrrole and N-hexylpyrrole, respectively, as the central unit, which was connected to N,N-dimethylphenyl-4-azo on one side of the pyrrole molecule. Molecule A contained N-hexylpyrrole as the central unit, which was connected to anthracenyl-9-azo on one side of the pyrrole molecule.
View Article and Find Full Text PDFThe effect of the incorporation of a low-band-gap small-molecule BTD-TNP on the photovoltaic properties of vinylene copolymer P:PCBM bulk heterojunction solar cells has been investigated. The introduction of this small molecule increases both the short-circuit photocurrent and the overall power conversion efficiency of the photovoltaic device. The incident photon-to-current efficiency (IPCE) of the device based on P:PCBM:BTD-TNP shows two distinct bands, which correspond to the absorption bands of P:PCBM and BTD-TNP.
View Article and Find Full Text PDFTwo novel soluble compounds T and A that contain a central dihexyloxy-p-phenylenevinylene unit, intermediate moieties of thiophene or anthracene, respectively, and terminal cyano-vinylene nitrophenyls were synthesized and characterized. They showed moderate thermal stability and relatively low glass transition temperatures. These compounds displayed similar optical properties.
View Article and Find Full Text PDFThe diketopyrrolopyrrole-based copolymers PDPP-BBT and TDPP-BBT were synthesized and used as a donor for bulk heterojunction photovoltaic devices. The photophysical properties of these polymers showed absorption in the range 500-600 nm with a maximum peak around 563 nm, while TDPP-BBT showed broadband absorption in the range 620-800 nm with a peak around 656 nm. The power conversion efficiencies (PCE) of the polymer solar cells based on these copolymers and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) were 0.
View Article and Find Full Text PDF