As powerful activators of the immune system, cytokines have been extensively explored for treating various cancers. But despite encouraging advances and some drug approvals, the broad adoption of cytokine therapies in the clinic has been limited by low response rates and sometimes severe toxicities. This in part reflects an inefficient biodistribution to tumors or a pleiotropic action on bystander cells and tissues.
View Article and Find Full Text PDFDespite clinical evidence of antitumor activity, the development of cytokine therapies has been hampered by a narrow therapeutic window and limited response rates. Two cytokines of high interest for clinical development are interleukin 2 (IL2) and interleukin 12 (IL12), which potently synergize to promote the activation and proliferation of T cells and NK cells. However, the only approved human IL2 therapy, Proleukin, is rarely used in the clinic due to systemic toxicities, and no IL12 product has been approved to date due to severe dose-limiting toxicities.
View Article and Find Full Text PDFJennifer S. Michaelson, Chief Scientific Officer at Cullinan Oncology, and Patrick A. Baeuerle, scientific advisor to Cullinan Oncology and honorary professor in immunology at Ludwig Maximilians University Munich, discuss the use of CD19-specific T cell-engaging antibody therapies (TCEs) as therapeutics for autoimmune diseases.
View Article and Find Full Text PDFT cells expressing a mesothelin (MSLN)-specific T cell receptor fusion construct (TRuC), called TC-210, have demonstrated robust antitumor activity in preclinical models of mesothelioma, ovarian cancer, and lung cancer. However, they are susceptible to suppression by the programmed cell death protein 1 (PD-1)/programmed cell death protein ligand 1 (PD-L1) axis and lack intrinsic costimulatory signaling elements. To enhance the function of anti-MSLN TRuC-T cells, chimeric switch receptors (CSRs) have been designed to co-opt the immunosuppressive PD-1/PD-L1 axis and to deliver a CD28-mediated costimulatory signal.
View Article and Find Full Text PDFBackground: Despite significant progress in the development of T cell-engaging therapies for various B-cell malignancies, a high medical need remains for the refractory disease setting, often characterized by suboptimal target levels.
Methods: To address this issue, we have developed a 65-kDa multispecific antibody construct, CLN-978, with affinities tuned to optimize the killing of low-CD19 expressing tumor cells. CLN-978 bound to CD19 on B cells with picomolar affinity, and to CD3ε on T cells with nanomolar affinity.