Chaperones are a large family of proteins crucial for maintaining cellular protein homeostasis. One such chaperone is the 70 kDa heat shock protein (Hsp70), which plays a crucial role in protein (re)folding, stability, functionality, and translocation. While the key events in the Hsp70 chaperone cycle are well established, a relatively small number of distinct substrates were repetitively investigated.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2024
Protein self-assembly plays a vital role in a myriad of biological functions and in the construction of biomaterials. Although the physical association underlying these assemblies offers high specificity, the advantage often compromises the overall durability of protein complexes. To address this challenge, we propose a novel strategy that reinforces the molecular self-assembly of protein complexes mediated by their ligand.
View Article and Find Full Text PDFThe 18th Congress of the Polish Biophysical Society took place at the Faculty of Physics of the University of Warsaw in Warsaw, Poland, in September 2022. In total, 111 attendees (Attendance Profile: 107 in-person, 4 remote; Italy 1, Lithuania 1, Poland 104, United Kingdom 1, United States 4) participated in the event. The authors of lectures and posters at the Congress were invited to prepare their presentations in the form of articles in this special issue of the European Biophysics Journal.
View Article and Find Full Text PDFThe Hsp70 chaperone exploits allosteric communication between its substrate binding domain and its nucleotide binding domain to regulate the loading and release of misfolded polypeptides in an ATP-hydrolysis-dependent manner. In this issue of Biophysical Journal, Singh, Rief, and Žoldák report an exquisitely detailed study of the nanomechanical aspects of the allosteric mechanism in DnaK, an Escherichia coli heat shock protein 70 chaperone.
View Article and Find Full Text PDFA highly bioluminescent protein, NanoLuc (Nluc), has seen numerous applications in biological assays since its creation. We recently engineered a NanoLuc polyprotein that showed high bioluminescence but displayed a strong misfolding propensity after mechanical unfolding. Here, we present our single-molecule force spectroscopy (SMFS) studies by atomic force microscopy (AFM) and steered molecular dynamics (SMD) simulations on two new hybrid protein constructs comprised of Nluc and I91 titin domains, I91-I91-Nluc-I91-I91-I91-I91 (I91-Nluc-I91) and I91-Nluc-I91-Nluc-I91-Nluc-I91, to characterize the unfolding behavior of Nluc in detail and to further investigate its misfolding properties that we observed earlier for the I91-Nluc-I91 construct.
View Article and Find Full Text PDF