Publications by authors named "P B Lazarow"

Chlamydia trachomatis is an obligate intracellular pathogen responsible for loss of eyesight through trachoma and for millions of cases annually of sexually transmitted diseases. The bacteria develop within a membrane-bounded inclusion. They lack enzymes for several biosynthetic pathways, including those to make some phospholipids, and exploit their host to compensate.

View Article and Find Full Text PDF
Viruses exploiting peroxisomes.

Curr Opin Microbiol

August 2011

Viruses that are of great importance for global public health, including HIV, influenza and rotavirus, appear to exploit a remarkable organelle, the peroxisome, during intracellular replication in human cells. Peroxisomes are sites of lipid biosynthesis and catabolism, reactive oxygen metabolism, and other metabolic pathways. Viral proteins are targeted to peroxisomes (the spike protein of rotavirus) or interact with peroxisomal proteins (HIV's Nef and influenza's NS1) or use the peroxisomal membrane for RNA replication.

View Article and Find Full Text PDF

There are several endocytic pathways, which are either dependent on or independent of clathrin. This study focuses on a poorly characterized mechanism-clathrin- and caveolae-independent endocytosis-used by the interleukin-2 receptor beta (IL-2R beta). We address the question of its regulation in comparison with the clathrin-dependent pathway.

View Article and Find Full Text PDF

This chapter concerns one branch of the peroxisome import pathway for newly-synthesized peroxisomal proteins, specifically the branch for matrix proteins that contain a peroxisome targeting sequence type 2 (PTS2). The structure and utilization of the PTS2 are discussed, as well as the properties of the receptor, Pex7p, which recognizes the PTS2 sequence and conveys these proteins to the common translocation machinery in the peroxisome membrane. We also describe the recent evidence that this receptor recycles into the peroxisome matrix and back out to the cytosol in the course of its function.

View Article and Find Full Text PDF

Pex7p is the soluble receptor responsible for importing into peroxisomes newly synthesized proteins bearing a type 2 peroxisomal targeting sequence. We observe that appending GFP to Pex7p's COOH terminus shifts Pex7p's intracellular distribution from predominantly cytosolic to predominantly peroxisomal in Saccharomyces cerevisiae. Cleavage of the link between Pex7p and GFP within peroxisomes liberates GFP, which remains inside the organelle, and Pex7p, which exits to the cytosol.

View Article and Find Full Text PDF