Adoptive T-cell immunotherapy holds great promise for the treatment of viral complications in immunocompromised patients resistant to standard anti-viral strategies. We present a retrospective analysis of 78 patients from 19 hospitals across Australia and New Zealand, treated over the last 15 years with "off-the-shelf" allogeneic T cells directed to a combination of Epstein-Barr virus (EBV), cytomegalovirus (CMV), BK polyomavirus (BKV), John Cunningham virus (JCV) and/or adenovirus (AdV) under the Australian Therapeutic Goods Administration's Special Access Scheme. Most patients had severe post-transplant viral complications, including drug-resistant end-organ CMV disease, BKV-associated haemorrhagic cystitis and EBV-driven post-transplant lymphoproliferative disorder.
View Article and Find Full Text PDFThe discovery of ferroelectricity in hafnia based thin films has catalyzed significant research focused on understanding the ferroelectric property origins and means to increase stability of the ferroelectric phase. Prior studies have revealed that biaxial tensile stress via an electrode "capping effect" is a suspected ferroelectric phase stabilization mechanism. This effect is commonly reported to stem from a coefficient of thermal expansion (CTE) incongruency between the hafnia and top electrode.
View Article and Find Full Text PDFThe performance of programmable voltage signals that exploit the quantum behavior of superconducting Josephson junctions continues to improve and enhance measurements in metrology, communications, and quantum control. We review advances in pulse-driven digital synthesis techniques with Josephson-junction-based devices. Quantum-based synthesis of voltage waveforms has been demonstrated at frequencies up to 3 GHz and rms amplitudes up to 4 V.
View Article and Find Full Text PDF