Publications by authors named "P B Bechstein"

Article Synopsis
  • The suprachiasmatic nucleus (SCN) in the hypothalamus is the central control hub for circadian rhythms in mammals, producing various neurotransmitters.
  • Researchers confirmed the presence of β-adrenergic receptors in the SCN and examined their effects on energy signaling through cAMP-regulated elements.
  • The study's findings suggest that stress-related increases in adrenaline can impact circadian functions and may help explain side effects of β-blockers used for hypertension.
View Article and Find Full Text PDF

We evaluated the signalling framework of immortalized cells from the hypothalamic suprachiasmatic nucleus (SCN) of the mouse. We selected a vasoactive intestinal peptide (VIP)-positive sub-clone of immortalized mouse SCN-cells stably expressing a cAMP-regulated-element (CRE)-luciferase construct named SCNCRE. We characterized these cells in terms of their status as neuronal cells, as well as for important components of the cAMP-dependent signal transduction pathway and compared them to SCN ex vivo.

View Article and Find Full Text PDF

The adult, mature central nervous system (CNS) has limited plasticity. Physical exercising can counteract this limitation by inducing plasticity and fostering processes such as learning, memory consolidation and formation. Little is known about the molecular factors that govern these mechanisms, and how they are connected with exercise.

View Article and Find Full Text PDF

Mechanisms of hippocampus-related memory formation are time-of-day-dependent. While the circadian system and clock genes are related to timing of hippocampal mnemonic processes (acquisition, consolidation, and retrieval of long-term memory [LTM]) and long-term potentiation (LTP), little is known about temporal gating mechanisms. Here, the role of the neurohormone melatonin as a circadian time cue for hippocampal signaling and memory formation was investigated in C3H/He wildtype (WT) and melatonin receptor-knockout ( ) mice.

View Article and Find Full Text PDF

Laboratory mice are well capable of performing innate routine behaviour programmes necessary for courtship, nest-building and exploratory activities although housed for decades in animal facilities. We found that in mice inactivation of the clock gene Period1 profoundly changes innate routine behaviour programmes like those necessary for courtship, nest building, exploration and learning. These results in wild-type and Period1 mutant mice, together with earlier findings on courtship behaviour in wild-type and period-mutant Drosophila melanogaster, suggest a conserved role of Period-genes on innate routine behaviour.

View Article and Find Full Text PDF