In complex diseases such as cancer, modulating cytokine signatures of disease using innate immune agonists holds therapeutic promise. Novel multi-agonist treatments offer tunable control of the immune system because they are uniquely pathogen inspired, eliciting robust antitumor responses by promoting synergistic cytokine responses. However, the chief strategic hurdle is ensuring multi-agonist delivery to the same target cells, highlighting the importance of using nanomaterial-based carriers.
View Article and Find Full Text PDFImmunooncol Technol
March 2024
Cancer immunotherapy offers transformative promise particularly for the treatment of lethal cancers, since a correctly trained immune system can comprehensively orchestrate tumor clearance with no need for continued therapeutic intervention. Historically, the majority of immunotherapies have been T cell-focused and have included immune checkpoint inhibitors, chimeric antigen receptor T cells, and T-cell vaccines. Unfortunately T-cell-focused therapies have failed to achieve optimal efficacy in most solid tumors largely because of a highly immunosuppressed 'cold' or immune-excluded tumor microenvironment (TME).
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma has quickly risen to become the 3 leading cause of cancer-related death. This is in part due to its fibrotic tumor microenvironment (TME) that contributes to poor vascularization and immune infiltration and subsequent chemo- and immunotherapy failure. Here we investigated an innovative immunotherapy approach combining local delivery of STING and TLR4 innate immune agonists lipid-based nanoparticles (NPs) co-encapsulation with senescence-inducing RAS-targeted therapies that can remodel the immune suppressive PDAC TME through the senescence-associated secretory phenotype.
View Article and Find Full Text PDFCytosolic innate immune sensing is critical for protecting barrier tissues. NOD1 and NOD2 are cytosolic sensors of small peptidoglycan fragments (muropeptides) derived from the bacterial cell wall. These muropeptides enter cells, especially epithelial cells, through unclear mechanisms.
View Article and Find Full Text PDF