Objectives: To examine the effect of the NAD precursor, nicotinic acid (NA), for improving skeletal muscle status in sedentary older people.
Methods: In a double-blind, randomised, placebo-controlled design, 18 sedentary yet otherwise healthy older (65-75 y) males were assigned to 2-weeks of NA (acipimox; 250 mg × 3 daily, n=8) or placebo (PLA, n=10) supplementation. At baseline, and after week 1 and week 2 of supplementation, a battery of functional, metabolic, and molecular readouts were measured.
Background/objectives: The acute phase of stroke is marked by inflammation and mobility changes that can compromise nutritional status. This study was a randomized, double-blind, placebo-controlled trial evaluating the effectiveness of creatine supplementation for older people during seven days of hospitalization for stroke compared to usual care.
Method: The primary outcome measures were changes in functional capacity, strength, muscle mass, and muscle degradation.
It has been hypothesised that skeletal muscle protein turnover is affected by menstrual cycle phase with a more anabolic environment during the follicular vs. the luteal phase. We assessed the influence of menstrual cycle phase on muscle protein synthesis and myofibrillar protein breakdown in response to 6 days of controlled resistance exercise in young females during peak oestrogen and peak progesterone, using stable isotopes, unbiased metabolomics and muscle biopsies.
View Article and Find Full Text PDFThe scaffold protein PEAK1 acts downstream of integrin adhesion complexes and the epidermal growth factor receptor, orchestrating signaling events that control cell proliferation and cytoskeletal remodeling. In this study we investigated the role of PEAK1 in colorectal carcinoma (CRC) progression using various in vitro and in vivo models to replicate the stepwise pathogenesis of CRC. While we observed a cell-type specific role for PEAK1 in the proliferation and in human CRC cell lines in vitro, our in vivo experiments using different CRC mouse models driven by loss of Apc, with or without oncogenic Kras or Pten loss suggest that PEAK1 does not significantly contribute to tumor formation in vivo.
View Article and Find Full Text PDF