Publications by authors named "P Ashby"

We study the effect of strain on the magnetic properties and magnetization configurations in nanogranular FeGe1-xfilms (x=0.53±0.05) with and without B20 FeGe nanocrystals surrounded by an amorphous structure.

View Article and Find Full Text PDF

Magnetic skyrmions have so far been treated as two-dimensional spin structures characterized by a topological winding number. However, in real systems with the finite thickness of the device material being larger than the magnetic exchange length, the skyrmion spin texture extends into the third dimension and cannot be assumed as homogeneous. Using soft x-ray laminography, we reconstruct with about 20-nanometer spatial (voxel) size the full three-dimensional spin texture of a skyrmion in an 800-nanometer-diameter and 95-nanometer-thin disk patterned into a 30× [iridium/cobalt/platinum] multilayered film.

View Article and Find Full Text PDF

Covalent chemistry is a versatile approach for expanding the ligandability of the human proteome. Activity-based protein profiling (ABPP) can infer the specific residues modified by electrophilic compounds through competition with broadly reactive probes. However, the extent to which such residue-directed platforms fully assess the protein targets of electrophilic compounds in cells remains unclear.

View Article and Find Full Text PDF

We study the temperature dependent elastic properties of BaSrTiO freestanding membranes across the ferroelectric-to-paraelectric phase transition using an atomic force microscope. The bending rigidity of thin membranes can be stiffer compared to stretching due to strain gradient elasticity (SGE). We measure the Young's modulus of freestanding BaSrTiO drumheads in bending and stretching dominated deformation regimes on a variable temperature platform, finding a peak in the difference between the two Young's moduli obtained at the phase transition.

View Article and Find Full Text PDF

The conformational dynamics of nucleosome arrays generate a diverse spectrum of microscopic states, posing challenges to their structural determination. Leveraging cryogenic electron tomography (cryo-ET), we determine the three-dimensional (3D) structures of individual mononucleosomes and arrays comprising di-, tri-, and tetranucleosomes. By slowing the rate of condensation through a reduction in ionic strength, we probe the intra-array structural transitions that precede inter-array interactions and liquid droplet formation.

View Article and Find Full Text PDF