Single-cell technologies offer insights into molecular feature distributions, but comparing them poses challenges. We propose a kernel-testing framework for non-linear cell-wise distribution comparison, analyzing gene expression and epigenomic modifications. Our method allows feature-wise and global transcriptome/epigenome comparisons, revealing cell population heterogeneities.
View Article and Find Full Text PDFTumor heterogeneity is an important driver of treatment failure in cancer since therapies often select for drug-tolerant or drug-resistant cellular subpopulations that drive tumor growth and recurrence. Profiling the drug-response heterogeneity of tumor samples using traditional genomic deconvolution methods has yielded limited results, due in part to the imperfect mapping between genomic variation and functional characteristics. Here, we leverage mechanistic population modeling to develop a statistical framework for profiling phenotypic heterogeneity from standard drug-screen data on bulk tumor samples.
View Article and Find Full Text PDF