Publications by authors named "P Arneberg"

Working groups for integrated ecosystem assessments are often challenged with understanding and assessing recent change in ecosystems. As a basis for this, the groups typically have at their disposal many time series and will often need to prioritize which ones to follow up for closer analyses and assessment. In this article we provide a procedure termed Flagged Observation analysis that can be applied to all the available time series to help identifying time series that should be prioritized.

View Article and Find Full Text PDF

Ecosystems are subjected to increasing exposure to multiple anthropogenic drivers. This has led to the development of national and international accounting systems describing the condition of ecosystems, often based on few, highly aggregated indicators. Such accounting systems would benefit from a stronger theoretical and empirical underpinning of ecosystem dynamics.

View Article and Find Full Text PDF

Knowledge of trophic interaction is necessary to understand the dynamics of ecosystems and develop ecosystem-based management. The key data to measure these interactions should come from large-scale diet analyses with good taxonomic resolution. To that end, molecular methods that analyze prey DNA from guts and feces provide high-resolution dietary taxonomic data.

View Article and Find Full Text PDF

Introduction: Monogeneans of the genus Gyrodactylus were found on the gills of specimens of the bigeye sculpin Triglops nybelini Jensen, 1944 caught by trawl in the Barents Sea in January-February 2016.

Methods: Morphological preparations of the parasites were examined and photographed under a microscope at magnifications of × 100-1000 and morphometric analyses were carried out on 22 specimens using ImageJ2 software. Eight of the specimens used for the morphological comparisons were also subjected to molecular analyses by sequencing a region of the ribosomal DNA spanning partial 18S, the internal transcribed spacers 1 and 2 (ITS1 and 2), 5.

View Article and Find Full Text PDF

If common processes generate size-abundance relationships among all animals, then similar patterns should be observed across groups with different ecologies, such as parasites and free-living animals. We studied relationships among body size, life-history traits, and population intensity (density in infected hosts) among nematodes parasitizing mammals. Parasite size and intensity were negatively correlated independently of all other parasite and host factors considered and regardless of type of analyses (i.

View Article and Find Full Text PDF