This paper presents two datasets obtained from laboratory experiments of urban flooding in a street network performed at the University of Liège. The experimental model represents a part of a synthetic urban district that consists of three inlets, three outlets and several three- and four- branches crossroads. The following experimental data was produced: (i) dataset 1: time-series of flow depths at model inlets and time-series of discharges at model outlets for a two-branch junction model, a two-branch bifurcation model and a district model.
View Article and Find Full Text PDFThis paper presents a dataset obtained from fifty four laboratory experiments of the breaching of fluvial dikes due to flow overtopping. Data were collected on two complementary experimental setups, each consisting of a main channel representing the river, an erodible lateral dike and a floodplain. The dataset covers seven test series, involving varying hydraulic boundary conditions (e.
View Article and Find Full Text PDFUrban development may increase the risk of future floods because of local changes in hydrological conditions and an increase in flood exposure that arises from an increasing population and expanding infrastructure within flood-prone zones. Existing urban land use change models generally consider the expansion process and do not consider the densification of existing urban areas. In this paper, we simulate 24 possible urbanization scenarios in Wallonia region (Belgium) until 2100.
View Article and Find Full Text PDFThe objective of this paper is to investigate the respective influence of various urban pattern characteristics on inundation flow. A set of 2000 synthetic urban patterns were generated using an urban procedural model providing locations and shapes of streets and buildings over a square domain of 1×1km. Steady two-dimensional hydraulic computations were performed over the 2000 urban patterns with identical hydraulic boundary conditions.
View Article and Find Full Text PDF