Publications by authors named "P Aranaz"

MicroRNAs play a pivotal role in the regulation of adipose tissue function and have emerged as promising therapeutic candidates for the management of obesity and associated comorbidities. Among them, miR-1 could be a potential biomarker for metabolic diseases and contribute to metabolic homeostasis. However, thorough research is required to fully elucidate the impact of miR-1 on human adipocyte thermogenesis and metabolism.

View Article and Find Full Text PDF

Aims: Gestational diabetes mellitus (GDM) is the most common complication of pregnancy and is known to be associated with an increased risk of postpartum metabolic disease. Based on the important role that the intestinal microbiota plays in blood glucose regulation and insulin sensitivity, supplementation of probiotic and postbiotic strains could improve glucose metabolism and tolerance in GDM.

Main Methods: 56 4-week-old female C57BL/6J-mice were divided into 4 groups (n = 14 animals/group): control (CNT), high-fat/high-sucrose (HFS), pA1c® alive (pA1c®) and heat-inactivated pA1c® (pA1c®HI).

View Article and Find Full Text PDF

Background/objectives: Collagen is a protein formed by very long amino acid chains. When conveniently treated, it can incorporate water into the net, thus increasing its volume and mass. The present work aimed to evaluate the potential anti-obesity effects of bovine collagen that has been technologically treated to increase its water retention capacity in an acid pH medium, with the objective of inducing satiation.

View Article and Find Full Text PDF
Article Synopsis
  • Eating foods high in polyphenols can help prevent long-term diseases, but we still need to learn more before making strong health recommendations!
  • Future research needs to focus on how safe polyphenols are, how they work together, and how they interact with our gut bacteria for better diets!
  • Scientists will also explore new ways to deliver polyphenols and understand how they can aid sports nutrition and recovery!
View Article and Find Full Text PDF

Background: Edible plants have been linked to the mitigation of metabolic disturbances in liver and adipose tissue, including the decrease of lipogenesis and the enhancement of lipolysis and adipocyte browning. In this context, plant microRNAs could be key bioactive molecules underlying the cross-kingdom beneficial effects of plants. This study sought to explore the impact of plant-derived microRNAs on the modulation of adipocyte and hepatocyte genes involved in metabolism and thermogenesis.

View Article and Find Full Text PDF