Responsive nanomaterials have emerged as promising candidates for advanced drug delivery systems (DDSs), offering the potential to precisely target disease sites and enhance treatment efficacy. To fulfil their potential, such materials need to be engineered to respond to specific variations in biological conditions. In this work, we present a series of pH/redox dual-responsive hybrid nanoparticles featuring an amphiphilic shell polymer and a pH-responsive core polymer.
View Article and Find Full Text PDFFive complexes of gallium derived from hydroxamic acids have been synthesised, characterised, and their anti-bacterial activity and mammalian cell toxicity established. These are three metal-organic complexes; [Ga(BPHA)] 1, [Ga(BHA-)] 2, [Ga(SHA-)(SHA-)] 3, and two heteroleptic organometallic complexes [GaMe(BPHA)] 4, and [GaMe(BHA-)] 5, along with the iron complex [Fe(BPHA)] 6 (BPHA-H = -benzoyl--phenylhydroxamic acid, BHA-H = phenylhydroxamic acid, and SHA-H = salicylhydroxamic acid). Solid-state structures of 1, 4-6 were identified by single-crystal X-ray crystallography.
View Article and Find Full Text PDFBackground: The evolution of artificial intelligence has introduced new ways to disseminate health information, including natural language processing models like ChatGPT. However, the quality and readability of such digitally generated information remains understudied. This study is the first to compare the quality and readability of digitally generated health information against leaflets produced by professionals.
View Article and Find Full Text PDF