Publications by authors named "P Andrew Karplus"

Reversible phosphorylation is a fundamental mechanism for controlling protein function. Despite the critical roles phosphorylated proteins play in physiology and disease, our ability to study individual phospho-proteoforms has been hindered by a lack of versatile methods to efficiently generate homogeneous proteins with site-specific phosphoamino acids or with functional mimics that are resistant to phosphatases. Genetic code expansion (GCE) is emerging as a transformative approach to tackle this challenge, allowing direct incorporation of phosphoamino acids into proteins during translation in response to amber stop codons.

View Article and Find Full Text PDF

Quantitative labeling of biomolecules is necessary to advance areas of antibody-drug conjugation, super-resolution microscopy imaging of molecules in live cells, and determination of the stoichiometry of protein complexes. Bio-orthogonal labeling to genetically encodable noncanonical amino acids (ncAAs) offers an elegant solution; however, their suboptimal reactivity and stability hinder the utility of this method. Previously, we showed that encoding stable 1,2,4,5-tetrazine (Tet)-containing ncAAs enables rapid, complete conjugation, yet some expression conditions greatly limited the quantitative reactivity of the Tet-protein.

View Article and Find Full Text PDF

Infections by bacteria in the genus cause a range of widespread and potentially debilitating conditions in humans and other animals. We analyzed predicted structures of a family of proteins that are potential vaccine targets found in all spp. Our findings deepen the understanding of protein structure, provide a descriptive framework for discussion of the protein structure, and outline regions of the proteins that may be key targets in host-microbe interactions and anti-chlamydial immunity.

View Article and Find Full Text PDF

14-3-3 proteins are dimeric hubs that bind hundreds of phosphorylated "clients" to regulate their function. Installing stable, functional mimics of phosphorylated amino acids into proteins offers a powerful strategy to study 14-3-3 function in cellular-like environments, but a previous genetic code expansion (GCE) system to translationally install nonhydrolyzable phosphoserine (nhpSer), with the γ-oxygen replaced with CH, site-specifically into proteins has seen limited usage. Here, we achieve a 40-fold improvement in this system by engineering into a six-step biosynthetic pathway that produces nhpSer from phosphoenolpyruvate.

View Article and Find Full Text PDF

The ability to selectively modify proteins at two or more defined locations opens new avenues for manipulating, engineering, and studying living systems. As a chemical biology tool for the site-specific encoding of non-canonical amino acids into proteins in vivo, genetic code expansion (GCE) represents a powerful tool to achieve such modifications with minimal disruption to structure and function through a two-step "dual encoding and labeling" (DEAL) process. In this review, we summarize the state of the field of DEAL using GCE.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionhn3rmbr9vl7n8qngv5ha2u50v6qojchd): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once