Publications by authors named "P Abolmaesumi"

Left ventricular (LV) geometric patterns aid clinicians in the diagnosis and prognostication of various cardiomyopathies. The aim of this study is to assess the accuracy and reproducibility of LV dimensions and wall thickness using deep learning (DL) models. A total of 30,080 unique studies were included; 24,013 studies were used to train a convolutional neural network model to automatically assess, at end-diastole, LV internal diameter (LVID), interventricular septal wall thickness (IVS), posterior wall thickness (PWT), and LV mass.

View Article and Find Full Text PDF

In real-world clinical settings, traditional deep learning-based classification methods struggle with diagnosing newly introduced disease types because they require samples from all disease classes for offline training. Class incremental learning offers a promising solution by adapting a deep network trained on specific disease classes to handle new diseases. However, catastrophic forgetting occurs, decreasing the performance of earlier classes when adapting the model to new data.

View Article and Find Full Text PDF

Endometrial cancer (EC) has four molecular subtypes with strong prognostic value and therapeutic implications. The most common subtype (NSMP; No Specific Molecular Profile) is assigned after exclusion of the defining features of the other three molecular subtypes and includes patients with heterogeneous clinical outcomes. In this study, we employ artificial intelligence (AI)-powered histopathology image analysis to differentiate between p53abn and NSMP EC subtypes and consequently identify a sub-group of NSMP EC patients that has markedly inferior progression-free and disease-specific survival (termed 'p53abn-like NSMP'), in a discovery cohort of 368 patients and two independent validation cohorts of 290 and 614 from other centers.

View Article and Find Full Text PDF

Purpose: Deep learning-based analysis of micro-ultrasound images to detect cancerous lesions is a promising tool for improving prostate cancer (PCa) diagnosis. An ideal model should confidently identify cancer while responding with appropriate uncertainty when presented with out-of-distribution inputs that arise during deployment due to imaging artifacts and the biological heterogeneity of patients and prostatic tissue.

Methods: Using micro-ultrasound data from 693 patients across 5 clinical centers who underwent micro-ultrasound guided prostate biopsy, we train and evaluate convolutional neural network models for PCa detection.

View Article and Find Full Text PDF

Purpose: Real-time assessment of surgical margins is critical for favorable outcomes in cancer patients. The iKnife is a mass spectrometry device that has demonstrated potential for margin detection in cancer surgery. Previous studies have shown that using deep learning on iKnife data can facilitate real-time tissue characterization.

View Article and Find Full Text PDF