Publications by authors named "P Abellan"

In situ and (scanning) transmission electron microscopy [(S)TEM] is a powerful characterization technique that uses imaging, diffraction, and spectroscopy to gain nano-to-atomic scale insights into the structure-property relationships in materials. This technique is both customizable and complex because many factors impact the ability to collect structural, compositional, and bonding information from a sample during environmental exposure or under application of an external stimulus. In the past two decades, in situ and (S)TEM methods have diversified and grown to encompass additional capabilities, higher degrees of precision, dynamic tracking abilities, enhanced reproducibility, and improved analytical tools.

View Article and Find Full Text PDF

Species distributed across wide elevational gradients are likely to experience local thermal adaptation and exhibit high thermal plasticity, as these gradients are characterised by steep environmental changes over short geographic distances (i.e., strong selection differentials).

View Article and Find Full Text PDF

An intricate interplay between evolutionary and demographic processes has frequently resulted in complex patterns of genetic and phenotypic diversity in alpine lineages, posing serious challenges to species delimitation and biodiversity conservation planning. Here we integrate genomic data, geometric morphometric analyses and thermal tolerance experiments to explore the role of Pleistocene climatic changes and adaptation to alpine environments on patterns of genomic and phenotypic variation in diving beetles from the taxonomically complex Agabus bipustulatus species group. Genetic structure and phylogenomic analyses revealed the presence of three geographically cohesive lineages, two representing trans-Palearctic and Iberian populations of the elevation-generalist A.

View Article and Find Full Text PDF

Elevation gradients provide powerful study systems for examining the influence of environmental filters in shaping species assemblages. High-mountain habitats host specific high-elevation assemblages, often comprising specialist species adapted to endure pronounced abiotic stress, while such harsh conditions prevent lowland species from colonizing or establishing. While thermal tolerance may drive the altitudinal segregation of ectotherms, its role in structuring aquatic insect communities remains poorly explored.

View Article and Find Full Text PDF

The detailed characterization of fouling in membranes is essential to understand any observed improvement or reduction on filtration performance. Electron microscopy allows detailed structural characterization, and its combination with labeling techniques, using electron-dense probes, typically allows for the differentiation of biomolecules. Developing specific protocols that allow for differentiation of biomolecules in membrane fouling by electron microscopy is a major challenge due to both as follows: the necessity to preserve the native state of fouled membranes upon real filtration conditions as well as the inability of the electron-dense probes to penetrate the membranes once they have been fouled.

View Article and Find Full Text PDF