Coal mining endangers the environment by contaminating of soil, surface, and ground water with coal mine drainage water (CMW) polluted by heavy metals. Microalgal cultures, hyper-accumulators of heavy metals, represent a promising solution for CMW biotreatment. A bottleneck of this approach is the availability of microalgal strains that combine a large capacity for heavy metal biocapture with a high resilience to their toxic effects.
View Article and Find Full Text PDFPharmaceuticals including antibiotics are among the hazardous micropollutants (HMP) of the environment. Incomplete degradation of the HMP leads to their persistence in water bodies causing a plethora of deleterious effects. Conventional wastewater treatment cannot remove HMP completely and a promising alternative comprises biotechnologies based on microalgae.
View Article and Find Full Text PDFMicroalgae are naturally adapted to the fluctuating availability of phosphorus (P) to opportunistically uptake large amounts of inorganic phosphate (P) and safely store it in the cell as polyphosphate. Hence, many microalgal species are remarkably resilient to high concentrations of external P. Here, we report on an exception from this pattern comprised by a failure of the high P-resilience in strain IPPAS C-2056 normally coping with very high P concentrations.
View Article and Find Full Text PDFMicroalga has been gaining increasing attention of investigators as a potential competitor to for astaxanthin and other xanthophylls production. Phytohormones, including abscisic acid (ABA), at concentrations relevant to that in hydroponic wastewater, have proven themselves as strong inductors of microalgae biomass productivity and biosynthesis of valuable molecules. The main goal of this research was to evaluate the influence of phytohormone ABA on the physiology of in a non-aseptic batch experiment.
View Article and Find Full Text PDFAmino acid transport systems perform important physiological functions; their role should certainly be considered in microbial production of amino acids. Typically, in the context of metabolic engineering, efforts are focused on the search for and application of specific amino acid efflux pumps. However, in addition, importers can also be used to improve the industrial process as a whole.
View Article and Find Full Text PDF