Publications by authors named "P A Zavodszky"

Protein homodimers have been classified as three-state or two-state dimers depending on whether a folded monomer forms before association, but the details of the folding-binding mechanisms are poorly understood. Kinetic transition networks of conformational states have provided insight into the folding mechanisms of monomeric proteins, but extending such a network to two protein chains is challenging as all the relative positions and orientations of the chains need to be included, greatly increasing the number of degrees of freedom. Here, we present a simplification of the problem by grouping all states of the two chains into two layers: a dissociated and an associated layer.

View Article and Find Full Text PDF

The amyloidogenic processing of APP depends on two events: its phosphorylation by ROCK2 (at Thr654) and the phosphorylation of the APP-cleaving enzyme BACE1 (at Ser498). However, the mechanisms and structural details of APP-ROCK2 and BACE1-ROCK2 binding are unknown. Using direct physical methods in combination with an in silico approach, we found that BACE1 binds into the substrate-binding groove of ROCK2 with a low affinity (K = 18 µM), while no binding of APP to ROCK2 alone could be detected.

View Article and Find Full Text PDF

Complement factor D (FD) is a serine protease present predominantly in the active form in circulation. It is synthesized as a zymogen (pro-FD), but it is continuously converted to FD by circulating active MASP-3. FD is a unique, self-inhibited protease.

View Article and Find Full Text PDF

Factor D (FD) is an essential element of the alternative pathway of the complement system, and it circulates predominantly in cleaved, activated form in the blood. In resting blood, mannose-binding lectin-associated serine protease 3 (MASP-3) is the exclusive activator of pro-FD. Similarly to FD, MASP-3 also circulates mainly in the active form.

View Article and Find Full Text PDF

Rho-associated protein kinase 2 (ROCK2) is a membrane-anchored, long, flexible, multidomain, multifunctional protein. Its functions can be divided into two categories: membrane-proximal and membrane-distal. A recent study concluded that membrane-distal functions require the fully extended conformation, and this conclusion was supported by electron microscopy.

View Article and Find Full Text PDF