Exchange protein activated by cyclic AMP (Epac) -- a cyclic AMP-activated guanine nucleotide exchange factor for Ras-like GTPases -- has emerged as a novel mediator of pivotal processes in the cardiovascular system, including cellular calcium handling, hypertrophy, integrin-mediated cell adhesion, establishment of cell polarity, cell migration and endothelial barrier functioning. Epac controls these various cellular responses apparently by signaling to several effector proteins. Spatiotemporal dynamics in the subcellular distribution of Epac-driven signaling networks probably determine the net outcome of cyclic AMP signaling in the cardiovascular system.
View Article and Find Full Text PDFThe activation of the Ras-related GTPase R-Ras, which has been implicated in the regulation of various cellular functions, by G protein-coupled receptors (GPCRs) was studied in HEK-293 cells stably expressing the M3 muscarinic acetylcholine receptor (mAChR), which can couple to several types of heterotrimeric G proteins. Activation of the receptor induced a very rapid and transient activation of R-Ras. Studies with inhibitors and activators of various signaling pathways indicated that R-Ras activation by the M3 mAChR is dependent on cyclic AMP formation but is independent of protein kinase A.
View Article and Find Full Text PDFType I phosphatidylinositol 4-phosphate 5-kinase (PIP5K) catalyzes the formation of the phospholipid, phosphatidylinositol 4,5-bisphosphate (PIP(2)), which is implicated in many cellular processes. The Rho GTPases, RhoA and Rac1, have been shown previously to activate PIP5K and to bind PIP5K. Three type I PIP5K isoforms (Ialpha,Ibeta, and Igamma) have been identified; however, it is unclear whether these isoforms are differentially or even sequentially regulated by Rho GTPases.
View Article and Find Full Text PDFStimulation of phospholipase C (PLC) by G(q)-coupled receptors such as the M(3) muscarinic acetylcholine receptor (mAChR) is caused by direct activation of PLC-beta enzymes by Galpha(q) proteins. We have recently shown that G(s)-coupled receptors can stimulate PLC-epsilon, apparently via formation of cyclic AMP and activation of the Ras-related GTPase Rap2B. Here we report that PLC stimulation by the M(3) mAChR expressed in HEK-293 cells also involves, in part, similar mechanisms.
View Article and Find Full Text PDFStimulation of phosphoinositide-hydrolysing phospholipase C (PLC) generating inositol-1,4,5-trisphosphate is a major calcium signalling pathway used by a wide variety of membrane receptors, activating distinct PLC-beta or PLC-gamma isoforms. Here we report a new PLC and calcium signalling pathway that is triggered by cyclic AMP (cAMP) and mediated by a small GTPase of the Rap family. Activation of the adenylyl cyclase-coupled beta2-adrenoceptor expressed in HEK-293 cells or the endogenous receptor for prostaglandin E1 in N1E-115 neuroblastoma cells induced calcium mobilization and PLC stimulation, seemingly caused by cAMP formation, but was independent of protein kinase A (PKA).
View Article and Find Full Text PDF