Optical coherence tomography (OCT) is a promising tool for intraoperative tissue morphology determination. Several studies suggest that attenuation coefficient derived from the OCT images, can differentiate between tissues of different morphology, such as normal and pathological structures of the brain, skin, and other tissues. In the present study, the depth-resolved method for attenuation coefficient calculation was adopted for the real-world situation of the depth-dependent OCT sensitivity and additive imaging noise with nonzero mean.
View Article and Find Full Text PDFIntroduction: Despite the introduction of increasingly multifaceted diagnostic techniques and the general advances in emergency abdominal and vascular surgery, the outcome of treatment of patients with acute impaired intestinal circulation remains unsatisfactory. The non-invasive and high-resolution technique of optical coherence tomography (OCT) can be used intraoperatively to assess intestine viability and associated conditions that frequently emerge under conditions of impaired blood circulation. This study aims to demonstrate the effectiveness of multimodal (MM) OCT for intraoperative diagnostics of both the microstructure (cross-polarization OCT mode) and microcirculation (OCT angiography mode) of the small intestine wall in patients with acute mesenteric ischemia (AMI).
View Article and Find Full Text PDFA numerical method that compensates image distortions caused by random fluctuations of the distance to an object in spectral-domain optical coherence tomography (SD OCT) has been proposed and verified experimentally. The proposed method is based on the analysis of the phase shifts between adjacent scans that are caused by micrometer-scale displacements and the subsequent compensation for the displacements through phase-frequency correction in the spectral space. The efficiency of the method is demonstrated in model experiments with harmonic and random movements of a scattering object as well as during in vivo imaging of the retina of the human eye.
View Article and Find Full Text PDFIntroduction: Otitis media with effusion (OME) accounts for 15-17% of the total number of recorded diseases of the middle ear. Surgical methods have become much more common. One of the factors affecting the tactics and effectiveness of treatment OME is the degree of viscosity of the effusion.
View Article and Find Full Text PDFA method for numerical estimation and correction of aberrations of the eye in fundus imaging with optical coherence tomography (OCT) is presented. Aberrations are determined statistically by using the estimate based on likelihood function maximization. The method can be considered as an extension of the phase gradient autofocusing algorithm in synthetic aperture radar imaging to 2D optical aberration correction.
View Article and Find Full Text PDF