As assemblies of genomes of new species with varying degrees of relationship appear, it becomes obvious that structural rearrangements of the genome, such as inversions, translocations, and transposon movements, are an essential and often the main source of evolutionary variation. In this regard, the following questions arise. How conserved are the regulatory regions of genes? Do they have a common evolutionary origin? And how and at what rate is the functional activity of genes restored during structural changes in the promoter region? In this article, we analyze the evolutionary history of the formation of the regulatory region of the gene in different lineages of the genus , as well as the participation of mobile elements in structural rearrangements and in the replacement of specific areas of the promoter region with those of independent evolutionary origin.
View Article and Find Full Text PDFRas genes were first identified in the 1960s as transforming oncogenes that caused tumors in rats infected with Harvey and Kirsten sarcoma viruses (Ha-ras and Ki-ras oncogenes, accordingly). Subsequently, transforming ras genes were found in human cancer cells. Further investigations of neuroblastoma cells resulted in the finding of the third ras gene in the human, which was called N-ras.
View Article and Find Full Text PDF