Publications by authors named "P A Pesek"

Article Synopsis
  • Monoallelic germline pathogenic variants in certain Fanconi anemia genes are known to increase breast and ovarian cancer risk, but the effects of variants in FANCG/XRCC9 remain unclear.
  • Researchers found that the frequency of truncating variants in FANCG did not significantly differ between breast cancer, ovarian cancer patients, and controls.
  • The study concludes that heterozygous germline FANCG variants are unlikely to play a role in developing breast or ovarian cancer.
View Article and Find Full Text PDF

Germline CHEK2 pathogenic variants confer an increased risk of female breast cancer (FBC). Here we describe a recurrent germline intronic variant c.1009-118_1009-87delinsC, which showed a splice acceptor shift in RNA analysis, introducing a premature stop codon (p.

View Article and Find Full Text PDF

Emerging areas such as the Internet of Things (IoT), wearable and wireless sensor networks require the implementation of optoelectronic devices that are cost-efficient, high-performing and capable of conforming to different surfaces. Organic semiconductors and their deposition via digital printing techniques have opened up new possibilities for optical devices that are particularly suitable for these innovative fields of application. In this work, we present the fabrication and characterization of high-performance organic photodiodes (OPDs) and their use as an optical receiver in an indoor visible light communication (VLC) system.

View Article and Find Full Text PDF

This paper provides experimental results for a multi-user visible light communications system using multi-band carrier-less amplitude and phase (m-CAP) modulation scheme. We optimize the system performance by adapting pulse shaping filter parameters, subcarrier spacing and allocating different baud rates to individual sub-bands called allocated m-CAP (Am-CAP). We show that a maximal system data rate of ∼468 Mb/s for four users can be supported while gaining higher flexibility for optimization and the same or lower computational complexity compared with the conventional m-CAP scheme.

View Article and Find Full Text PDF

In this Letter, we propose a new configuration for visible light communication systems, which results in doubling of the data rate due to the use of polarization division multiplexing. As light-emitting diodes are unpolarized incoherent light sources, we isolate both the perpendicular and parallel modes for independent modulation. For the first time, to the best of our knowledge, we show that it is possible to transmit and successfully recover two separate orthogonal frequency division multiplexing (OFDM) signals on each polarization (pol-OFDM).

View Article and Find Full Text PDF