Publications by authors named "P A Paskevich"

Increased activity of calpains is implicated in synaptic dysfunction and neurodegeneration in Alzheimer's disease (AD). The molecular mechanisms responsible for increased calpain activity in AD are not known. Here, we demonstrate that disease progression is propelled by a marked depletion of the endogenous calpain inhibitor, calpastatin (CAST), from AD neurons, which is mediated by caspase-1, caspase-3, and calpains.

View Article and Find Full Text PDF

Axon caliber may be influenced by intrinsic neuronal factors and extrinsic factors related to myelination. To understand these extrinsic influences, we studied how axon-caliber expansion is related to changes in neurofilament and microtubule organization as axons of retinal ganglion cells interact with oligodendroglia and become myelinated during normal mouse brain development. Caliber expanded and neurofilaments accumulated only along regions of the axon invested with oligodendroglia.

View Article and Find Full Text PDF

Specific antibodies and cytochemical markers combined with several imaging and morphometric techniques were used to characterize the endosomal-lysosomal system in mature neurons of the normal human central nervous system and to quantitate changes in its function in Alzheimer's disease. Compartments containing cathespin D (Cat D) and other acid hydrolases included a major subpopulation of mature lysosomes lacking mannose-6-phosphate receptors (MPR) and smaller populations of late endosomes (MPR-positive) and lipofuscin granules (MPR-negative). Antibodies to the pro-isoform of Cat D decorated perinuclear vacuolar compartments corresponding to late endosomes.

View Article and Find Full Text PDF

The high molecular weight subunits of neurofilaments, NF-H and NF-M, have distinctively long carboxyl-terminal domains that become highly phosphorylated after newly formed neurofilaments enter the axon. We have investigated the functions of this process in normal, unperturbed retinal ganglion cell neurons of mature mice. Using in vivo pulse labeling with [35S]methionine or [32P]orthophosphate and immunocytochemistry with monoclonal antibodies to phosphorylation-dependent neurofilament epitopes, we showed that NF-H and NF-M subunits of transported neurofilaments begin to attain a mature state of phosphorylation within a discrete, very proximal region along optic axons starting 150 microns from the eye.

View Article and Find Full Text PDF