A continuous model of a metabolic network including gene regulation to simulate metabolic fluxes during batch cultivation of yeast Saccharomyces cerevisiae was developed. The metabolic network includes reactions of glycolysis, gluconeogenesis, glycerol and ethanol synthesis and consumption, the tricarboxylic acid cycle, and protein synthesis. Carbon sources considered were glucose and then ethanol synthesized during growth on glucose.
View Article and Find Full Text PDFCurr Opin Pharmacol
June 2001
The emergence of new vectors of viral origin (recombinant adeno-associated viruses, second and third generation adenoviruses) and a new potential source of cells for transplantation (muscle-derived stem cells) are broadening the panel of therapeutic options for myopathies. Although the perfect gene-transfer method(s) have not yet been found, recent findings will certainly constitute a strong knowledge base for future clinical trials.
View Article and Find Full Text PDFTransfection and transduction studies involving the use of the full-length dystrophin (11 kb) or the truncated mini-gene (6 kb) cDNAs are hampered by the large size of the resulting viral or non-viral expression vectors. This usually results in very low yields of transgene-expressing cells. Moreover, the detection of the few transgene-expressing cells is often tedious and costly.
View Article and Find Full Text PDFClinical use of human granulocyte-colony stimulating factor (hG-CSF) to treat various diseases involving neutropenia has been previously shown to (1) successfully increase circulating neutrophils, (2) reduce condition-related infections, and (3) cause few side effects in patients. To alleviate the symptoms of neutropenia, the patient must receive frequent injections of recombinant hG-CSF. Permanent ways to deliver stable levels of the molecule to the patient are being investigated.
View Article and Find Full Text PDFBiochem Biophys Res Commun
June 2000
The limited proliferative capacity of dystrophic human myoblasts severely limits their ability to be genetically modified and used for myoblast transplantation. The forced expression of the catalytic subunit of telomerase can prevent telomere erosion and can immortalize different cell types. We thus tested the ability of telomerase to immortalize myoblasts and analyzed the effect of telomerase expression on the success of myoblast transplantation.
View Article and Find Full Text PDF