Publications by authors named "P A Libourel"

Alteration of motor control during rapid eye movements (REM) sleep has been extensively described in sleep disorders, in particular in isolated REM sleep behavior disorder (iRBD) and narcolepsy type 1 (NT1). NT1 is caused by the loss of orexin/hypocretin (ORX) neurons. Unlike in iRBD, the RBD comorbid symptoms of NT1 are not associated with alpha-synucleinopathies.

View Article and Find Full Text PDF

Sleep is a prominent physiological state observed across the animal kingdom. Yet, for some animals, our ability to identify sleep can be masked by behaviors otherwise associated with being awake, such as for some sharks that must swim continuously to push oxygenated seawater over their gills to breathe. We know that sleep in buccal pumping sharks with clear rest/activity cycles, such as draughtsboard sharks (Cephaloscyllium isabellum, Bonnaterre, 1788), manifests as a behavioral shutdown, postural relaxation, reduced responsiveness, and a lowered metabolic rate.

View Article and Find Full Text PDF

Microsleeps, the seconds-long interruptions of wakefulness by eye closure and sleep-related brain activity, are dangerous when driving and might be too short to provide the restorative functions of sleep. If microsleeps do fulfill sleep functions, then animals faced with a continuous need for vigilance might resort to this sleep strategy. We investigated electroencephalographically defined sleep in wild chinstrap penguins, at sea and while nesting in Antarctica, constantly exposed to an egg predator and aggression from other penguins.

View Article and Find Full Text PDF

A new study shows that bearded dragons have a peculiar way to coordinate sleep state changes between brain hemispheres. The hemisphere that acts first imposes its activity on the other during their REM sleep-like state.

View Article and Find Full Text PDF

Mammalian sleep has been implicated in maintaining a healthy extracellular environment in the brain. During wakefulness, neuronal activity leads to the accumulation of toxic proteins, which the glymphatic system is thought to clear by flushing cerebral spinal fluid (CSF) through the brain. In mice, this process occurs during non-rapid eye movement (NREM) sleep.

View Article and Find Full Text PDF