Plants are fascinating living systems, possessing starkly different morphology to mammals, yet they have still evolved ways to defend themselves, consume prey, communicate, and in the case of plants like Mimosa pudica even move in response to a variety of stimuli. The complex physiological pathways driving this are of great interest, though many questions remain. In this work, a known responsive plant, M.
View Article and Find Full Text PDFIce is emerging as a promising sacrificial material in the rapidly expanding area of advanced manufacturing for creating precise 3D internal geometries. Freeform 3D printing of ice (3D-ICE) can produce microscale ice structures with smooth walls, hierarchical transitions, and curved and overhang features. However, controlling 3D-ICE is challenging due to an incomplete understanding of its complex physics involving heat transfer, fluid dynamics, and phase changes.
View Article and Find Full Text PDFMulticellular model organisms, such as (fruit fly), are frequently used in a myriad of biological research studies due to their biological significance and global standardization. However, traditional tools used in these studies generally require manual handling, subjective phenotyping, and bulk treatment of the organisms, resulting in laborious experimental protocols with limited accuracy. Advancements in microtechnology over the course of the last two decades have allowed researchers to develop automated, high-throughput, and multifunctional experimental tools that enable novel experimental paradigms that would not be possible otherwise.
View Article and Find Full Text PDF