Publications by authors named "P A LaPierre"

Quantification of potassium (K) excretion in dairy cattle is important to understand the environmental impact of dairy farming. To improve and monitor the environmental impact of dairy cows, there is a need for a simple, inexpensive, and less laborious method to quantify K excretion on dairy farms. The adoption of empirical mathematical models has been shown to be a promising tool to address this issue.

View Article and Find Full Text PDF

The unprecedented precision and resolution of whole genome sequencing (WGS) can provide definitive identification of infectious agents for epidemiological outbreak tracking. WGS approaches, however, are frequently impeded by low pathogen DNA recovery from available primary specimens or unculturable samples. A cost-effective hybrid capture assay for WGS analysis directly on primary specimens was developed.

View Article and Find Full Text PDF

Dairy cattle excreta are a valuable source of orthophosphate (Ortho-P), an inorganic form of phosphorus (P) that is readily available for microorganisms, plant growth, and development. There is, however, a growing environmental concern about the potential negative environmental impact of excessive amounts of Ortho-P excretion, which can lead to the eutrophication of water bodies. As a result, the development of mathematical equations to quantify and manage Ortho-P excretion on dairy farms could prove valuable for environmental sustainability.

View Article and Find Full Text PDF

Adequate prediction of postruminal outflows of essential AA (EAA) is the starting point of balancing rations for EAA in dairy cows. The objective of this meta-analysis was to compare the performance of 3 dairy feed evaluation systems (National Research Council [NRC], Cornell Net Protein and Carbohydrate System version 6.5.

View Article and Find Full Text PDF

Adequate prediction of postruminal outflow of protein fractions is the starting point for the determination of metabolizable protein supply in dairy cows. The objective of this meta-analysis was to compare the performance of 3 dairy feed evaluation systems (National Research Council [NRC], Cornell Net Protein and Carbohydrate System [CNCPS], and National Academies of Sciences, Engineering and Medicine [NASEM]) to predict outflows (g/d) of nonammonia nitrogren (NAN), microbial N (MiN), and nonammonia nonmicrobial N (NANMN). Predictions of rumen degradabilities (% of nutrient) of protein (RDP), NDF, and starch were also evaluated.

View Article and Find Full Text PDF