Publications by authors named "P A Kotelnikova"

Proton therapy can treat tumors located in radiation-sensitive tissues. This article demonstrates the possibility of enhancing the proton therapy with targeted gold nanoparticles that selectively recognize tumor cells. Au-PEG nanoparticles at concentrations above 25 mg/L and 4 Gy proton dose caused complete death of EMT6/P cells in vitro.

View Article and Find Full Text PDF

Biodegradable nanomaterials can significantly improve the safety profile of nanomedicine. Germanium nanoparticles (Ge NPs) with a safe biodegradation pathway are developed as efficient photothermal converters for biomedical applications. Ge NPs synthesized by femtosecond-laser ablation in liquids rapidly dissolve in physiological-like environment through the oxidation mechanism.

View Article and Find Full Text PDF

Targeted medicine uses the distinctive features of cancer cells to find and destroy tumors. We present human epidermal growth factor receptor 2 (HER2)-targeted PLGA-chitosan nanoparticles for cancer therapy and visualization. Loading with two near-infrared (NIR) dyes provides imaging in the NIR transparency window and phototherapy triggered by 808 nm light.

View Article and Find Full Text PDF

Therapy for aggressive metastatic breast cancer remains a great challenge for modern biomedicine. Biocompatible polymer nanoparticles have been successfully used in clinic and are seen as a potential solution. Specifically, researchers are exploring the development of chemotherapeutic nanoagents targeting the membrane-associated receptors of cancer cells, such as HER2.

View Article and Find Full Text PDF

Nanoparticle-based chemotherapy is considered to be an effective approach to cancer diagnostics and therapy in modern biomedicine. However, efficient tumor targeting remains a great challenge due to the lack of specificity, selectivity, and high dosage of chemotherapeutic drugs required. A two-step targeted drug delivery strategy (DDS), involving cancer cell pre-targeting, first with a first nontoxic module and subsequent targeting with a second complementary toxic module, is a solution for decreasing doses for administration and lowering systemic toxicity.

View Article and Find Full Text PDF