Publications by authors named "P A Henkart"

In this study we show that CD4+ T cells develop a functional regulated secretory compartment after differentiation into effector cells, as shown by their increased expression and T-cell receptor-induced exocytosis of lysosomal and cytotoxic effector proteins. We tested the hypothesis that activation-induced surface cytotoxic T-lymphocyte-associated antigen (CTLA-4) expression in CD4+CD25+ regulatory T cells occurs via a similar regulated secretory pathway. Fluorescence microscopy showed that internal CTLA-4 in these cells was stored in a vesicular compartment distinct from lysosomal vesicles.

View Article and Find Full Text PDF

Lymphocyte-mediated cytotoxicity via granule exocytosis operates by the perforin-mediated transfer of granzymes from CTLs and NK cells into target cells where caspase activation and other death pathways are triggered. Granzyme B (GzB) is a major cytotoxic effector in this pathway, and its fate in target cells has been studied by several groups using immunodetection. In this study, we have used a newly developed cell-permeable fluorogenic GzB substrate to measure this protease activity in three different living targets following contact with cytotoxic effectors.

View Article and Find Full Text PDF

To understand the molecular basis for the rapid and robust memory T-cell responses, we examined gene expression and chromatin modification by histone H3 lysine 9 (H3K9) acetylation in resting and activated human naive and memory CD8(+) T cells. We found that, although overall gene expression patterns were similar, a number of genes are differentially expressed in either memory or naive cells in their resting and activated states. To further elucidate the basis for differential gene expression, we assessed the role of histone H3K9 acetylation in differential gene expression.

View Article and Find Full Text PDF

Administration of daclizumab, a humanized mAb directed against the IL-2Ralpha chain, strongly reduces brain inflammation in multiple sclerosis patients. Here we show that daclizumab treatment leads to only a mild functional blockade of CD4(+) T cells, the major candidate in multiple sclerosis pathogenesis. Instead, daclizumab therapy was associated with a gradual decline in circulating CD4(+) and CD8(+) T cells and significant expansion of CD56(bright) natural killer (NK) cells in vivo, and this effect correlated highly with the treatment response.

View Article and Find Full Text PDF

The progressive loss of CD4 T lymphocyte is patognomonic of Human Immunodeficiency Virus (HIV) infection and results in immunodeficiency and the appearance of acquired immunodeficiency syndrome (AIDS)-defining pathologies. Although a percentage of CD4 T lymphocytes is destroyed directly by HIV infection, a much higher proportion of lymphocytes remains uninfected and therefore must be destroyed by mechanisms not directly involving viral infection. One such mechanism is apoptotic T cell death (ATCD).

View Article and Find Full Text PDF