Potentially toxic elements (PTE) pollution in water bodies is an emerging problem in recent decades due to uncontrolled discharges from human activities. Copper, zinc, arsenic, cadmium, lead, mercury, and uranium are considered potentially toxic and carcinogenic elements that threaten human health. Microalgae-based technologies for the wastewater treatment have gained importance in recent years due to their biomass high growth rates and effectiveness.
View Article and Find Full Text PDFGlobal efforts in vaccination have led to a decrease in COVID-19 mortality but a high circulation of SARS-CoV-2 is still observed in several countries, resulting in some cases of severe lockdowns. In this sense, wastewater-based epidemiology remains a powerful tool for supporting regional health administrations in assessing risk levels and acting accordingly. In this work, a dynamic artificial neural network (DANN) has been developed for predicting the number of COVID-19 hospitalized patients in hospitals in Valladolid (Spain).
View Article and Find Full Text PDFThis study investigates the presence of SARS-CoV-2 in indoor and outdoor environments in two cities in Norway between April and May 2022. With the lifting of COVID-19 restrictions in the country and a focus on vaccination, this research aims to shed light on the potential for virus transmission in various settings. Air sampling was conducted in healthcare and non-healthcare facilities, covering locations frequented by individuals across different age groups.
View Article and Find Full Text PDFAnaerobic and microalgae-based technologies for municipal wastewater treatment have emerged as sustainable alternatives to activated sludge systems. However, viruses are a major sanitary concern for reuse applications of liquid and solid byproducts from these technologies. To assess their capacity to reduce viruses during secondary wastewater treatment, enveloped Phi6 and nonenveloped MS2 bacteriophages, typically used as surrogates of several types of wastewater viruses, were spiked into batch bioreactors treating synthetic municipal wastewater (SMWW).
View Article and Find Full Text PDF