Disease relapse after treatment is common in triple-negative breast cancer (TNBC), ovarian cancer (OVCA), and non-small cell lung cancer (NSCLC). Therapies that target tumor-initiating cells (TICs) should improve patient survival by eliminating the cells that can drive tumor recurrence and metastasis. We demonstrate that protein tyrosine kinase 7 (PTK7), a highly conserved but catalytically inactive receptor tyrosine kinase in the Wnt signaling pathway, is enriched on TICs in low-passage TNBC, OVCA, and NSCLC patient-derived xenografts (PDXs).
View Article and Find Full Text PDFThe high-grade pulmonary neuroendocrine tumors, small cell lung cancer (SCLC) and large cell neuroendocrine carcinoma (LCNEC), remain among the most deadly malignancies. Therapies that effectively target and kill tumor-initiating cells (TICs) in these cancers should translate to improved patient survival. Patient-derived xenograft (PDX) tumors serve as excellent models to study tumor biology and characterize TICs.
View Article and Find Full Text PDFPurpose: Triple-negative breast cancer (TNBC) and ovarian cancer each comprise heterogeneous tumors, for which current therapies have little clinical benefit. Novel therapies that target and eradicate tumor-initiating cells (TIC) are needed to significantly improve survival.
Experimental Design: A panel of well-annotated patient-derived xenografts (PDX) was established, and surface markers that enriched for TIC in specific tumor subtypes were empirically determined.
The envelope glycoprotein from vesicular stomatitis virus (VSV-G) has been used extensively to pseudotype lentiviral vectors, but has several drawbacks including cytotoxicity, potential for priming of immune responses against transgene products through efficient transduction of antigen-presenting cells (APCs) and sensitivity to inactivation by human complement. As an alternative to VSV-G, we extensively characterized lentiviral vectors pseudotyped with the gp64 envelope glycoprotein from baculovirus both in vitro and in vivo. We demonstrated for the first time that gp64-pseudotyped vectors could be delivered efficiently in vivo in mice via portal vein injection.
View Article and Find Full Text PDFLentiviral vectors have demonstrated great potential as gene therapy vectors mediating efficient ex vivo and in vivo gene delivery and long-term transgene expression in both dividing and nondividing cells. However, for clinical studies it must be demonstrated that lentiviral vector preparations are safe and not contaminated by replication-competent recombinants related to the parental pathogenic virus. Here we describe a sensitive assay for the detection of replication-competent lentiviruses (RCL) in large-scale preparations of HIV-based lentiviral vectors.
View Article and Find Full Text PDF