Publications by authors named "P A Carpeggiani"

Wave packet interferometry with vacuum ultraviolet light has been used to probe a complex region of the electronic spectrum of molecular nitrogen, N2. Wave packets of Rydberg and valence states were excited by using double pulses of vacuum ultraviolet (VUV), free-electron-laser (FEL) light. These wave packets were composed of contributions from multiple electronic states with a moderate principal quantum number (n ∼ 4-9) and a range of vibrational and rotational quantum numbers.

View Article and Find Full Text PDF

In this work, we introduce a simplified approach to efficiently extend the high harmonic generation (HHG) cutoff in gases without the need for laser frequency conversion via parametric processes. Instead, we employ postcompression and red-shifting of a Yb:CaF laser via stimulated Raman scattering (SRS) in a nitrogen-filled stretched hollow core fiber. This driving scheme circumvents the low-efficiency window of parametric amplifiers in the 1100-1300 nm range.

View Article and Find Full Text PDF
Article Synopsis
  • * Our experiments revealed time-dependent oscillations in photoelectron yields and angular distributions, enhancing our understanding of interactions among intermediate resonant states.
  • * We identified distinct quantum pathways within nine resonances by analyzing individual photoelectron final states and their angular behavior, noting that exponential decay in photoelectron yield varies based on the final ionic state.
View Article and Find Full Text PDF

In this Letter, we investigate the energy-scaling rules of hollow-core fiber (HCF)-based nonlinear pulse propagation and compression merged with high-energy Yb-laser technology, in a regime where the effects such as plasma disturbance, optical damages, and setup size become important limiting parameters. As a demonstration, 70 mJ 230 fs pulses from a high-energy Yb laser amplifier were compressed down to 40 mJ 25 fs by using a 2.8-m-long stretched HCF with a core diameter of 1 mm, resulting in a record peak power of 1.

View Article and Find Full Text PDF

Attosecond pulses are central to the investigation of valence- and core-electron dynamics on their natural timescales. The reproducible generation and characterization of attosecond waveforms has been demonstrated so far only through the process of high-order harmonic generation. Several methods for shaping attosecond waveforms have been proposed, including the use of metallic filters, multilayer mirrors and manipulation of the driving field.

View Article and Find Full Text PDF