In this article, we specify for the first time a quantitative biopharmaceutics classification system for orally inhaled drugs. To date, orally inhaled drug product developers have lacked a biopharmaceutics classification system like the one developed to navigate the development of immediate release of oral medicines. Guideposts for respiratory drug discovery chemists and inhalation product formulators have been elusive and difficult to identify due to the complexity of pulmonary physiology, the intricacies of drug deposition and disposition in the lungs, and the influence of the inhalation delivery device used to deliver the drug as a respirable aerosol.
View Article and Find Full Text PDFThe use of microbial biocontrol agents for control of postharvest disease has been the subject of intensive research over the past three decades resulting in commercialization of several biocontrol products. The objective of this research was to test endospore-forming bacteria collected from apple leaves for suppression of bitter rot and blue mold on apple. Bacteria were collected from abandoned, low-input, organic, and conventionally managed orchards in Pennsylvania and were screened for their ability to produce endospores, hydrolyze chitin, reduce pathogen growth in vitro, and suppress postharvest disease in vivo.
View Article and Find Full Text PDFThis work is the second in a series of publications outlining the fundamental principles and proposed design of a biopharmaceutics classifications system for inhaled drugs and drug products (the iBCS). Here, a mechanistic computer-based model has been used to explore the sensitivity of the primary biopharmaceutics functional output parameters: (i) pulmonary fraction dose absorbed () and (ii) drug half-life in lumen () to biopharmaceutics-relevant input attributes including dose number (Do) and effective permeability (). Results show the nonlinear sensitivity of primary functional outputs to variations in these attributes.
View Article and Find Full Text PDFFor oral drugs, the formulator and discovery chemist have a tool available to them that can be used to navigate the risks associated with the selection and development of immediate release oral drugs and drug products. This tool is the biopharmaceutics classification system (giBCS). Unfortunately, no such classification system exists for inhaled drugs.
View Article and Find Full Text PDFThe purpose of this review is to summarize essential pharmacological, pharmaceutical, and clinical aspects in the field of orally inhaled therapies that may help scientists seeking to develop new products. After general comments on the rationale for inhaled therapies for respiratory disease, the focus is on products approved approximately over the last half a century. The organization of these sections reflects the key pharmacological categories.
View Article and Find Full Text PDF