We introduce a family of membrane-targeted azobenzenes (MTs) with a push-pull character as a new tool for cell stimulation. These molecules are water soluble and spontaneously partition in the cell membrane. Upon light irradiation, they isomerize from trans to cis, changing the local charge distribution and thus stimulating the cell response.
View Article and Find Full Text PDFBackground: The use of light to control the activity of living cells is a promising approach in cardiac research due to its unparalleled spatio-temporal selectivity and minimal invasiveness. Ziapin2, a newly synthesized azobenzene compound, has recently been reported as an efficient tool for light-driven modulation of excitation-contraction coupling (ECC) in human-induced pluripotent stem cells-derived cardiomyocytes. However, the exact biophysical mechanism of this process remains incompletely understood.
View Article and Find Full Text PDFWe investigate interface failure of model materials representing architected thin films in contact with heterogeneous substrates. We find that, while systems with statistically isotropic distributions of impurities derive their fracture strength from the ability to develop rough detachment fronts, materials with hierarchical microstructures confine failure near a prescribed surface, where crack growth is arrested and crack surface correlations are suppressed. We develop a theory of network Green's functions for the systems at hand, and we find that the ability of hierarchical microstructures to control failure mode and locations comes at no performance cost in terms of peak stress and specific work of failure and derives from the quenched local anistotropy of the elastic interaction kernel.
View Article and Find Full Text PDF