Silver nanoparticles (Ag NPs) have been used in many studies due to their inhibitory properties on microorganisms such as bacteria and viruses. In recent years, due to global problems such as environmental pollution, the green synthesis (biosynthesis) method is frequently preferred because it is simple and low cost and does not require the use of toxic substances. The aim of this study is to synthesize silver nanoparticles (Ag NPs) from Ceratonia siliqua L.
View Article and Find Full Text PDFThe effects of Cu, Zn and their mixture on bioaccumulation and antioxidant enzyme activities of midgut and fat body of Galleria mellonella larvae were investigated. Exposure to mixtures of both metals showed a synergistic effect and the accumulation levels were increased in both tissues. When the metals were exposed separately the concentration of Zn increased in both tissues, whereas the concentration of Cu increased in midgut and decreased in fat body.
View Article and Find Full Text PDFBull Environ Contam Toxicol
September 2021
In this study, the effects of dietary CuO nanoparticles (NPs) on metabolic enzyme activity, biochemical parameters, and total (THC) and differential hemocyte counts (DHC) were determined in Galleria mellonella larvae. Using concentrations of 10, 100, 1000 mg/L and the LC10 and LC30 levels of CuO NPs, we determined that the NPs negatively impacted metabolic enzyme activity and biochemical parameters in larval hemolymph. Compared with the control, the greatest increase in THC was observed in larvae fed on diets with 100 mg L of CuO NPs.
View Article and Find Full Text PDFJ Environ Sci Health C Toxicol Carcinog
September 2021
Nanoparticles (NPs) are now being used in many industrial activities, such as mining, paint and glass industries. The frequent industrial use of NPs contributes to environmental pollution and may cause cellular and oxidative damage in native organisms. In this study, the toxic effects of titanium dioxide nanoparticles (TiO NPs) were investigated using larvae as a model insect species.
View Article and Find Full Text PDFEffects of copper oxide nanoparticles (CuO NPs) were investigated in the midgut and fat body of Galleria mellonella. Fourth instar larvae were exposed to 10 µg Cu/L of CuO until becoming last instar larvae, and catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione-s-transferase (GST) and acetylcholinesterase (AChE) and metal accumulation were evaluated. Copper accumulation was observed in midgut and fat body tissues of G.
View Article and Find Full Text PDF