Genome-scale metabolic models (GEMs) are used extensively for analysis of mechanisms underlying human diseases and metabolic malfunctions. However, the lack of comprehensive and high-quality GEMs for model organisms restricts translational utilization of omics data accumulating from the use of various disease models. Here we present a unified platform of GEMs that covers five major model animals, including Mouse1 (), Rat1 (), Zebrafish1 (), Fruitfly1 (), and Worm1 ().
View Article and Find Full Text PDFGenome-scale metabolic models (GEMs) are valuable tools to study metabolism and provide a scaffold for the integrative analysis of omics data. Researchers have developed increasingly comprehensive human GEMs, but the disconnect among different model sources and versions impedes further progress. We therefore integrated and extensively curated the most recent human metabolic models to construct a consensus GEM, Human1.
View Article and Find Full Text PDFThis review focuses on the construction of a global, comprehensive understanding of Bacillus subtilis through microarray studies. The microarray studies in B. subtilis were analysed based on the theme of the work, by mentioning the growth media, bioreactor operation conditions, RNA isolation method, number of data points analysed in exponential or stationary phases, compared genotypes, induction and repression ratios, investigated gene(s) and their positive and/or negative influences.
View Article and Find Full Text PDF