Publications by authors named "Ozlem Yaren"

Arthropod-borne viruses are major causes of human and animal disease, especially in endemic low- and middle-income countries. Mosquito-borne pathogen surveillance is essential for risk assessment and vector control responses. Sentinel chicken serosurveillance (antibody testing) and mosquito pool screening (by RT-qPCR or virus isolation) are currently used to monitor arbovirus transmission, however substantial time lags of seroconversion and/or laborious mosquito identification and RNA extraction steps sacrifice their early warning value.

View Article and Find Full Text PDF

Recently reported "displaceable probe" loop amplification (DP-LAMP) architecture has shown to amplify viral RNA from SARS-CoV-2 with little sample processing. The architecture allows signals indicating the presence of target nucleic acids to be spatially separated, and independent in sequence, from the complicated concatemer that LAMP processes create as part of their amplification process. This makes DP-LAMP an attractive molecular strategy to integrate with trap and sampling innovations to detect RNA from arboviruses carried by mosquitoes in the field.

View Article and Find Full Text PDF

One horizon in synthetic biology seeks alternative forms of DNA that store, transcribe, and support the evolution of biological information. Here, hydrogen bond donor and acceptor groups are rearranged within a Watson-Crick geometry to get 12 nucleotides that form 6 independently replicating pairs. Such artificially expanded genetic information systems (AEGIS) support Darwinian evolution .

View Article and Find Full Text PDF

Managing the pandemic caused by SARS-CoV-2 requires new capabilities in testing, including the possibility of identifying, in minutes, infected individuals as they enter spaces where they must congregate in a functioning society, including workspaces, schools, points of entry, and commercial business establishments. Here, the only useful tests (a) require no sample transport, (b) require minimal sample manipulation, (c) can be performed by unlicensed individuals, (d) return results on the spot in much less than one hour, and (e) cost no more than a few dollars. The sensitivity need not be as high as normally required by the FDA for screening asymptomatic carriers (as few as 10 virions per sample), as these viral loads are almost certainly not high enough for an individual to present a risk for forward infection.

View Article and Find Full Text PDF

Described here are the synthesis, enzymology and some applications of a purine nucleoside analog (H) designed to have two tautomeric forms, one complementary to thymidine (T), the other complementary to cytidine (C). The performance of H is compared by various metrics to performances of other 'biversal' analogs that similarly rely on tautomerism to complement both pyrimidines. These include (i) the thermodynamic stability of duplexes that pair these biversals with various standard nucleotides, (ii) the ability of the biversals to support polymerase chain reaction (PCR), (iii) the ability of primers containing biversals to equally amplify targets having polymorphisms in the primer binding site, and (iv) the ability of ligation-based assays to exploit the biversals to detect medically relevant single nucleotide polymorphisms (SNPs) in sequences flanked by medically irrelevant polymorphisms.

View Article and Find Full Text PDF

Zika, dengue, and chikungunya viruses are transmitted by mosquitoes, causing diseases with similar patient symptoms. However, they have different downstream patient-to-patient transmission potentials, and require very different patient treatments. Thus, recent Zika outbreaks make it urgent to develop tools that rapidly discriminate these viruses in patients and trapped mosquitoes, to select the correct patient treatment, and to understand and manage their epidemiology in real time.

View Article and Find Full Text PDF

Chikungunya virus (CHIKV) represents a growing and global concern for public health that needs inexpensive and convenient methods to collect mosquitoes as potential carriers so that they can be preserved, stored and transported for later and/or remote analysis. Reported here is a cellulose-based paper, derivatized with quaternary ammonium groups ("Q-paper") that meets these needs. In a series of tests, infected mosquito bodies were squashed directly on Q-paper.

View Article and Find Full Text PDF

Background: Zika, dengue, and chikungunya are three mosquito-borne viruses having overlapping transmission vectors. They cause diseases having similar symptoms in human patients, but requiring different immediate management steps. Therefore, rapid (< one hour) discrimination of these three viruses in patient samples and trapped mosquitoes is needed.

View Article and Find Full Text PDF

Noroviruses are the major cause of global viral gastroenteritis with short incubation times and small inoculums required for infection. This creates a need for a rapid molecular test for norovirus for early diagnosis, in the hope of preventing the spread of the disease. Non-chemists generally use off-the shelf reagents and natural DNA to create such tests, suffering from background noise that comes from adventitious DNA and RNA (collectively xNA) that is abundant in real biological samples, especially feces, a common location for norovirus.

View Article and Find Full Text PDF

This paper combines two advances to detect MERS-CoV, the causative agent of Middle East Respiratory Syndrome, that have emerged over the past few years from the new field of "synthetic biology". Both are based on an older concept, where molecular beacons are used as the downstream detection of viral RNA in biological mixtures followed by reverse transcription PCR amplification. The first advance exploits the artificially expanded genetic information systems (AEGIS).

View Article and Find Full Text PDF