Large Language Models (LLMs) are gaining significant popularity in recent years for specialized tasks using prompts due to their low computational cost. Standard methods like prefix tuning utilize special, modifiable tokens that lack semantic meaning and require extensive training for best performance, often falling short. In this context, we propose a novel method called Semantic Knowledge Tuning (SK-Tuning) for prompt and prefix tuning that employs meaningful words instead of random tokens.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS CoV-2) has been the primary reason behind the COVID-19 global pandemic which has affected millions of lives worldwide. The fundamental cause of the infection is the molecular binding of the viral spike protein receptor binding domain (SP-RBD) with the human cell angiotensin-converting enzyme 2 (ACE2) receptor. The infection can be prevented if the binding of RBD-ACE2 is resisted by utilizing certain inhibitors or drugs that demonstrate strong binding affinity towards the SP RBD.
View Article and Find Full Text PDFWhile research into drug-target interaction (DTI) prediction is fairly mature, generalizability and interpretability are not always addressed in the existing works in this field. In this paper, we propose a deep learning (DL)-based framework, called BindingSite-AugmentedDTA, which improves drug-target affinity (DTA) predictions by reducing the search space of potential-binding sites of the protein, thus making the binding affinity prediction more efficient and accurate. Our BindingSite-AugmentedDTA is highly generalizable as it can be integrated with any DL-based regression model, while it significantly improves their prediction performance.
View Article and Find Full Text PDFIn this study, we introduce an interpretable graph-based deep learning prediction model, AttentionSiteDTI, which utilizes protein binding sites along with a self-attention mechanism to address the problem of drug-target interaction prediction. Our proposed model is inspired by sentence classification models in the field of Natural Language Processing, where the drug-target complex is treated as a sentence with relational meaning between its biochemical entities a.k.
View Article and Find Full Text PDFDrug-target interaction (DTI) prediction through in vitro methods is expensive and time-consuming. On the other hand, computational methods can save time and money while enhancing drug discovery efficiency. Most of the computational methods frame DTI prediction as a binary classification task.
View Article and Find Full Text PDFModeling the information of social contagion processes has recently attracted a substantial amount of interest from researchers due to its wide applicability in network science, multi-agent-systems, information science, and marketing. Unlike in biological spreading, the existence of a reinforcement effect in social contagion necessitates considering the complexity of individuals in the systems. Although many studies acknowledged the heterogeneity of the individuals in their adoption of information, there are no studies that take into account the individuals' uncertainty during their adoption decision-making.
View Article and Find Full Text PDF