Biomed Phys Eng Express
September 2024
In the innate immune system, natural killer (NK) cells are effector lymphocytes which control several tumor types and microbial infections by limiting disease spread and tissue damage. With tumor cell killing abilities, with no priming or prior activation, NKs are potential anti-cancer therapies. In clinical practice, NKs are used in intravenous injections as they typically grow as suspension, similar to other blood cells.
View Article and Find Full Text PDFAntibiotic-resistant microorganisms have become a serious threat to public health, resulting in hospital infections, the majority of which are caused by commonly used urinary tract catheters. Strategies for preventing bacterial adhesion to the catheters' surfaces have been potentially shown as effective methods, such as coating thesurface with antimicrobial biomolecules. Here, novel antimicrobial peptides (AMPs) were designed as potential biomolecules to prevent antibiotic-resistant bacteria from binding to catheter surfaces.
View Article and Find Full Text PDFThe special bilayer structure of mitochondrion is a promising therapeutic target in the diagnosis and treatment of diseases such as cancer and metabolic diseases. Nanocarriers such as liposomes modified with mitochondriotropic moieties can be developed to send therapeutic molecules to mitochondria. In this study, DSPE-PEG-TPP polymer conjugate was synthesized and used to prepare mitochondria-targeted liposomes (TPPLs) to improve the therapeutic index of chemotherapeutic agents functioning in mitochondria and reduce their side effects.
View Article and Find Full Text PDFOsteoporosis, a terminal illness, has emerged as a global public health problem in recent years. The long-term use of bone anabolic drugs to treat osteoporosis causes multi-morbidity in elderly patients. Alternative therapies, such as allogenic and autogenic tissue grafts, face important issues, such as a limited source of allogenic grafts and tissue rejection in autogenic grafts.
View Article and Find Full Text PDFNowadays, it is very important to produce new-generation drugs with antimicrobial properties that will target biofilm-induced infections. The first target for combating these microorganisms, which are the source itself. Antimicrobial peptides, which are more effective than antibiotics due to their ability to kill microorganisms and use a different metabolic pathway, are among the new options today.
View Article and Find Full Text PDFCervical cancer has recently become one of the most prevalent cancers among women throughout the world. Traditional cancer therapies generate side effects due to off-target toxicity. Thus, novel cancer medications coupled with suitable drug delivery systems are required to improve cancer therapies.
View Article and Find Full Text PDFAs therapeutic agents that allow for minimally invasive administration, injectable biomaterials stand out as effective tools with tunable properties. Furthermore, hydrogels with responsive features present potential platforms for delivering therapeutics to desired sites in the body. Herein, temperature-responsive hydrogel scaffolds with embedded targeted nanoparticles were utilized to achieve controlled drug delivery via local drug administration.
View Article and Find Full Text PDFRecent reports on antibiotic resistance have highlighted the need to reduce the impact of this global health issue through urgent prevention and control. The World Health Organization currently considers antibiotic resistance as one of the most dangerous threats to global health. Therefore, Antimicrobial peptides (AMPs) are promising for the development of novel antibiotic molecules due to their high antimicrobial effects, non-inducing antimicrobial resistance (AMR) properties, and broad spectrum.
View Article and Find Full Text PDFCell transplants in therapeutic studies do not preserve their long-term function inside the donor body. In mesenchymal stem cell (MSC) transplants, transplanted cells disperse through the body and are prone to degradation by immune cells after the transplant process. Various strategies, such as usage of the immunosuppressive drugs to eliminate allograft rejection, are designed to increase the efficiency of cell therapy.
View Article and Find Full Text PDFThe need for rapidly developed diagnostic tests has gained significant attention after the recent pandemic. Production of neutralizing antibodies for vaccine development or antibodies to be used in diagnostic tests usually require the usage of recombinant proteins representing the infectious agent. However, peptides that can mimic these recombinant proteins may be rapidly utilized, especially in emergencies such as the recent outbreak.
View Article and Find Full Text PDFDisulfide exchange reaction has emerged as a powerful tool for reversible conjugation of proteins, peptides and thiol containing molecules to polymeric supports. In particular, the pyridyl disulfide group provides an efficient handle for the site-specific conjugation of therapeutic peptides and proteins bearing cysteine moieties. In this study, novel biodegradable dendritic platforms containing a pyridyl disulfide unit at their focal point were designed.
View Article and Find Full Text PDFDesign and synthesis of novel water-soluble polymers bearing reactive side chains are actively pursued due to their increasing demand in areas such as bioconjugation and drug delivery. This study reports the fabrication of poly(ethylene glycol) methacrylate based thiol-reactive water-soluble polymeric supports that can serve as targeted drug delivery vehicles. Thiol-reactive maleimide units were incorporated into polymers as side chains by use of a furan-protected maleimide containing monomer.
View Article and Find Full Text PDFA simple strategy to insert functional dendrons at precise positions along a linear polymer backbone is reported. Sequence controlled copolymerization of styrene and polyester dendrons containing a maleimide unit at their focal points was utilized to yield such polymers.
View Article and Find Full Text PDF