Clear cell sarcoma (CCS) is a rare, aggressive malignancy that most frequently arises in the soft tissues of the extremities. It is defined and driven by expression of one member of a family of related translocation-generated fusion oncogenes, the most common of which is . The EWSR1::ATF1 fusion oncoprotein reprograms transcription.
View Article and Find Full Text PDFBackground: The All of Us Research Program (AoURP, "the program") is an initiative, sponsored by the National Institutes of Health (NIH), that aims to enroll one million people (or more) across the USA. Through repeated engagement of participants, a research resource is being created to enable a variety of future observational and interventional studies. The program has also committed to genomic data generation and returning important health-related information to participants.
View Article and Find Full Text PDFReduced protein levels of SMARCB1 (also known as BAF47, INI1, SNF5) have long been observed in synovial sarcoma. Here, we show that combined genetic loss with expression in mice synergized to produce aggressive tumors with histomorphology, transcriptomes, and genome-wide BAF-family complex distributions distinct from alone, indicating a defining role for SMARCB1 in synovial sarcoma. silencing alone in mesenchyme modeled epithelioid sarcomagenesis.
View Article and Find Full Text PDFSarcoma comprises a group of malignancies that includes over 100 individual disease entities. Type-specific genetic events initiate each tumor, occurring within a specific cellular context or circumstance. All sarcomas share a relationship with mesenchymal tissues of origin.
View Article and Find Full Text PDFGenomic sequencing is rapidly transitioning into clinical practice, and implementation into healthcare systems has been supported by substantial government investment, totaling over US$4 billion, in at least 14 countries. These national genomic-medicine initiatives are driving transformative change under real-life conditions while simultaneously addressing barriers to implementation and gathering evidence for wider adoption. We review the diversity of approaches and current progress made by national genomic-medicine initiatives in the UK, France, Australia, and US and provide a roadmap for sharing strategies, standards, and data internationally to accelerate implementation.
View Article and Find Full Text PDFWe report the findings from a patient who presented with a concurrent mediastinal germ cell tumor (GCT) and acute myeloid leukemia (AML). Bone marrow pathology was consistent with a diagnosis of acute megakaryoblastic leukemia (AML M7), and biopsy of an anterior mediastinal mass was consistent with a nonseminomatous GCT. Prior studies have described associations between hematological malignancies, including AML M7 and nonseminomatous GCTs, and it was recently suggested that a common founding clone initiated both cancers.
View Article and Find Full Text PDFLarge-scale cancer sequencing data enable discovery of rare germline cancer susceptibility variants. Here we systematically analyse 4,034 cases from The Cancer Genome Atlas cancer cases representing 12 cancer types. We find that the frequency of rare germline truncations in 114 cancer-susceptibility-associated genes varies widely, from 4% (acute myeloid leukaemia (AML)) to 19% (ovarian cancer), with a notably high frequency of 11% in stomach cancer.
View Article and Find Full Text PDFImportance: Tests that predict outcomes for patients with acute myeloid leukemia (AML) are imprecise, especially for those with intermediate risk AML.
Objectives: To determine whether genomic approaches can provide novel prognostic information for adult patients with de novo AML.
Design, Setting, And Participants: Whole-genome or exome sequencing was performed on samples obtained at disease presentation from 71 patients with AML (mean age, 50.
Background: Diffuse low-grade and intermediate-grade gliomas (which together make up the lower-grade gliomas, World Health Organization grades II and III) have highly variable clinical behavior that is not adequately predicted on the basis of histologic class. Some are indolent; others quickly progress to glioblastoma. The uncertainty is compounded by interobserver variability in histologic diagnosis.
View Article and Find Full Text PDFSeveral genetic alterations characteristic of leukemia and lymphoma have been detected in the blood of individuals without apparent hematological malignancies. The Cancer Genome Atlas (TCGA) provides a unique resource for comprehensive discovery of mutations and genes in blood that may contribute to the clonal expansion of hematopoietic stem/progenitor cells. Here, we analyzed blood-derived sequence data from 2,728 individuals from TCGA and discovered 77 blood-specific mutations in cancer-associated genes, the majority being associated with advanced age.
View Article and Find Full Text PDFThe Cancer Genome Atlas (TCGA) Research Network has profiled and analyzed large numbers of human tumors to discover molecular aberrations at the DNA, RNA, protein and epigenetic levels. The resulting rich data provide a major opportunity to develop an integrated picture of commonalities, differences and emergent themes across tumor lineages. The Pan-Cancer initiative compares the first 12 tumor types profiled by TCGA.
View Article and Find Full Text PDFAlthough the potential for genomics to contribute to clinical care has long been anticipated, the pace of defining the risks and benefits of incorporating genomic findings into medical practice has been relatively slow. Several institutions have recently begun genomic medicine programs, encountering many of the same obstacles and developing the same solutions, often independently. Recognizing that successful early experiences can inform subsequent efforts, the National Human Genome Research Institute brought together a number of these groups to describe their ongoing projects and challenges, identify common infrastructure and research needs, and outline an implementation framework for investigating and introducing similar programs elsewhere.
View Article and Find Full Text PDFThe International Cancer Genome Consortium (ICGC) was launched to coordinate large-scale cancer genome studies in tumours from 50 different cancer types and/or subtypes that are of clinical and societal importance across the globe. Systematic studies of more than 25,000 cancer genomes at the genomic, epigenomic and transcriptomic levels will reveal the repertoire of oncogenic mutations, uncover traces of the mutagenic influences, define clinically relevant subtypes for prognosis and therapeutic management, and enable the development of new cancer therapies.
View Article and Find Full Text PDFDetermining the genetic basis of cancer requires comprehensive analyses of large collections of histopathologically well-classified primary tumours. Here we report the results of a collaborative study to discover somatic mutations in 188 human lung adenocarcinomas. DNA sequencing of 623 genes with known or potential relationships to cancer revealed more than 1,000 somatic mutations across the samples.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2008
Proteins in apoptotic pathways represent potential points of intervention in neurodegenerative disease. We identified several genes of interest that contain death domain such as CARD or Pyrin. We found that ASC and NALP10 were constitutively expressed in cerebellar neurons.
View Article and Find Full Text PDFSomatic alterations in cellular DNA underlie almost all human cancers. The prospect of targeted therapies and the development of high-resolution, genome-wide approaches are now spurring systematic efforts to characterize cancer genomes. Here we report a large-scale project to characterize copy-number alterations in primary lung adenocarcinomas.
View Article and Find Full Text PDFBackground: NARC 1/PCSK9 encodes a novel serine proteinase known to play a role in cholesterol homeostasis. NARC 1 mRNA expression in cerebellar granule neurons (CGNs) was discovered to be induced following an apoptotic injury. Coregulation of known apoptotic mediators (caspase-3 and death receptor 6) raises the possibility that NARC 1 might be involved in the propagation of apoptotic signaling in neurons.
View Article and Find Full Text PDFNAcht Leucine-rich-repeat Protein 1 (NALP1) contains a putative nucleotide binding site, a region of leucine-rich repeats, and death domain folds at both termini providing protein/protein association functions such as caspase recruitment. We report here that NALP1 gene expression was induced in primary cerebellar granule neurons (CGN) upon injury. Up-regulation of NALP1 was also observed in a model of transient focal ischemia induced by middle cerebral artery occlusion.
View Article and Find Full Text PDFThe NARC 1 gene encodes a novel proteinase K family proteinase. The domain structure of rat Narc 1 resembles that of the subtilisin-like proprotein convertases (SPCs), except that rNarc 1 lacks the canonical P-domain of SPCs, retaining only the RGD motif as part of what might be a cryptically functioning P-domain. Narc 1 undergoes autocatalytic intramolecular processing at the site LVFAQ/, resulting in the cleavage of its prosegment and the generation of an active proteinase with a broad alkaline pH optimum and no apparent calcium requirement for activity.
View Article and Find Full Text PDFDegeneration of neurons in Alzheimer's disease is mediated by beta-amyloid peptide by diverse mechanisms, which include a putative apoptotic component stimulated by unidentified signaling events. This report describes a novel beta-amyloid peptide-binding protein (denoted BBP) containing a G protein-coupling module. BBP is one member of a family of three proteins containing this conserved structure.
View Article and Find Full Text PDFThe interaction of the N-type calcium channel beta3 subunit with the alpha1B subunit alters the activation/inactivation kinetics and the maximal conductance of the channel. The defined protein-protein interaction of the human alpha1B and beta3 subunits provides a target for small-molecule modulation of N-type channel activity. We describe a high throughput screen based on a counterselection yeast two-hybrid assay, which was used to identify small molecules that disrupt alpha1B-beta3 subunit interactions and inhibit N-type calcium channel activity.
View Article and Find Full Text PDFGrowth hormone releasing hormone (GHRH) is the positive regulator of growth hormone synthesis and secretion in the anterior pituitary. The peptide confers activity by binding to a seven transmembrane domain G protein-coupled receptor. Signal transduction proceeds through subsequent G alpha s stimulation of adenylyl cyclase.
View Article and Find Full Text PDF