Strigolactones (SLs), synthesized in plant roots, play a dual role in modulating plant growth and development, and in inducing the germination of parasitic plant seeds and arbuscular mycorrhizal fungi in the rhizosphere. As phytohormones, SLs are crucial in regulating branching and shaping plant architecture. Despite the significant impact of branching strategies on the yield performance of fruit crops, limited research has been conducted on SLs in these crops.
View Article and Find Full Text PDFApomictic plants (reproducing via asexual seeds), unlike sexual individuals, avoid meiosis and egg cell fertilization. Consequently, apomixis is very important for fixing maternal genotypes in the next plant generations. Despite the progress in the study of apomixis, molecular and genetic regulation of the latter remains poorly understood.
View Article and Find Full Text PDFIn this study, we determined the structure of DNA methyltransferase (DNMT) genes in apomict and sexual Boechera species and investigated the expression levels during seed development. Protein and DNA sequences of diploid sexual Boechera stricta DNMT genes obtained from Phytozome 10.3 were used to identify the homologues in apomicts, Boechera holboellii and Boechera divaricarpa.
View Article and Find Full Text PDFAs a mode of reproduction in plants, apomixis leads to the generation of clones via seeds. Apomictic plants form viable diploid female gametes without meiosis (apomeiosis) and produce embryos without fertilization (parthenogenesis). Apomeiosis, as a major component of apomixis, has recently been reported in some Arabidopsis thaliana mutants; dyad mutants of SWI1 showed developmental processes common to apomeiosis, such as producing functional diploid gametes.
View Article and Find Full Text PDFJ Eur Acad Dermatol Venereol
September 2006