Sample preparation on cryo-EM grids can give various results, from very thin ice and homogeneous particle distribution (ideal case) to unwanted behavior such as particles around the "holes" or complexes that do not entirely correspond to the one in solution (real life). We recently run into such a case and finally found out that variations in the 3D reconstructions were systematically correlated with the grid batches that were used. We report the use of several techniques to investigate the grids' characteristics, namely TEM, SEM, Auger spectroscopy and Infrared Interferometry.
View Article and Find Full Text PDFCopolymers are valuable supports for obtaining heterogeneous catalysts that allow their recycling and therefore substantial savings, particularly in the field of asymmetric catalysis. This contribution reports the use of two comonomers: Azido-3-propylmethacrylate (AZMA) bearing a reactive azide function was associated with 2-methoxyethyl methacrylate (MEMA), used as a spacer, for the ATRP synthesis of copolymers, and then post-functionalized with a propargyl chromium salen complex. The controlled homopolymerization of MEMA by ATRP was firstly described and proved to be more controlled in molar mass than that of AZMA for conversions up to 63%.
View Article and Find Full Text PDFPure (a-Si:H) and methylated [a-Si(CH):H] amorphous silicon thin films were analyzed by time-of-flight secondary ion mass spectrometry after partial lithiation. Depth profiling gives insights into the lithiation mechanism of the material, enabling us to study the detailed biphasic process in the first lithiation process. Lithiation induces swelling and roughening of the active layer.
View Article and Find Full Text PDFSurface-enhanced Raman scattering (SERS), based on the enhancement of the Raman signal of molecules positioned within a few nanometres from a structured metal surface, is ideally suited to provide bacterial-specific molecular fingerprints which can be used for analytical purposes. However, for some complex structures such as bacteria, the generation of reproducible SERS spectra is still a challenging task. Among the various factors influencing the SERS variability (such as the nature of SERS-active substrate, Raman parameters and bacterial specificity), we demonstrate in this study that the environment of Gram-positive and Gram-negative bacteria deposited on ultra-thin silver films also impacts the origin of the SERS spectra.
View Article and Find Full Text PDFThe association of a mycotoxin-ochratoxin A (OTA)-with a high-affinity DNA aptamer (anti-OTA) immobilized on a functionalized surface has been investigated at the molecular level. Anti-OTA aptamers are coupled by aminolysis in several steps on an acid-terminated alkyl monolayer grafted on a silicon substrate, and Fourier transform infrared spectroscopy in attenuated total reflection geometry is used to assess the immobilization of anti-OTA (in its unfolded single-strand form) and determine its areal density (ca. 1.
View Article and Find Full Text PDFRapid, selective and sensitive sensing of bacteria remains challenging. We report on a highly sensitive and reproducible surface-enhanced Raman spectroscopy (SERS)-based sensing approach for the detection of uropathogenic Escherichia coli (E. coli) bacteria in urine.
View Article and Find Full Text PDFThe aqueous electrocatalytic reduction of CO into alcohol and hydrocarbon fuels presents a sustainable route towards energy-rich chemical feedstocks. Cu is the only material able to catalyse the substantial formation of multicarbon products (C/C), but competing proton reduction to hydrogen is an ever-present drain on selectivity. Here, a superhydrophobic surface was generated by 1-octadecanethiol treatment of hierarchically structured Cu dendrites, inspired by the structure of gas-trapping cuticles on subaquatic spiders.
View Article and Find Full Text PDFThe structure of mixed acid/decyl monolayers (MLs) grafted on oxide-free Si(111) surfaces by photochemical hydrosilylation in a mixture of neat undecylenic acid and 1-decene is studied in detail. After appropriate surface cleaning of the as-grafted surfaces, atomic force microscopy (AFM) (topography and phase imaging) and calibrated FTIR analysis demonstrate that a mixed monolayer is formed, free of residue. When the acid-molecule fraction (Γ) is >0.
View Article and Find Full Text PDFThe wavelength used during photochemical grafting of alkene onto silicon related surfaces influences molecular surface coverage. Ultraviolet light leads to apparent highly dense layers on UV absorbing materials due to the side reaction between alkenes resulting in strongly physisorbed dimers whereas higher wavelengths lead to dense and well-controlled layers.
View Article and Find Full Text PDFSilicon nitride is used for many technological applications, but a quantitative knowledge of its surface chemistry is still lacking. Native oxynitride at the surface is generally removed using fluorinated etchants, but the chemical composition of surfaces still needs to be determined. In this work, the thinning (etching efficiency) of the layers after treatments in HF and NHF solutions has been followed by using spectroscopic ellipsometry.
View Article and Find Full Text PDFEssential to the success of any surface-based carbohydrate biochip technology is that interactions of the particular interface with the target protein be reliable and reproducible and not susceptible to unwanted nonspecific adsorption events. This condition is particularly important when the technology is intended for the evaluation of low-affinity interactions such as those typically encountered between lectins and their monomeric glycan ligands. In this paper, we describe the fabrication of glycan (mannoside and lactoside) monolayers immobilized on hydrogenated crystalline silicon (111) surfaces.
View Article and Find Full Text PDFIn this work, we studied the attachment of active acetylcholinesterase (AChE) enzyme on a silicon substrate as a potential biomarker for the detection of organophosphorous (OP) pesticides. A multistep functionalization strategy was developed on a crystalline silicon surface: a carboxylic acid-terminated monolayer was grafted onto a hydrogen-terminated silicon surface by photochemical hydrosilylation, and then AChE was covalently attached through amide bonds using an activation EDC/NHS process. Each step of the modification was quantitatively characterized by ex-situ Fourier transform infrared spectroscopy in attenuated-total-reflection geometry (ATR-FTIR) and atomic force microscopy (AFM).
View Article and Find Full Text PDFCarbohydrate arrays are potentially one of the most attractive tools to study carbohydrate-based interactions. This paper describes a new analytical platform that exploits metal-enhanced fluorescence for the sensitive and selective screening of carbohydrate-lectin interactions. The chip consists of a glass slide covered with gold nanostructures, postcoated with a thin layer of amorphous silicon-carbon alloy (a-Si0.
View Article and Find Full Text PDFNanoscale Res Lett
November 2014
The formation of macropores in silicon during electrochemical etching processes has attracted much interest. Experimental evidences indicate that charge transport in silicon and in the electrolyte should realistically be taken into account in order to be able to describe the macropore morphology. However, up to now, none of the existing models has the requested degree of sophistication to reach such a goal.
View Article and Find Full Text PDFA key challenge in the development of glycan arrays is that the sensing interface be fabricated reliably so as to ensure the sensitive and accurate analysis of the protein-carbohydrate interaction of interest, reproducibly. These goals are complicated in the case of glycan arrays as surface sugar density can influence dramatically the strength and mode of interaction of the sugar ligand at any interface with lectin partners. In this Article, we describe the preparation of carboxydecyl-terminated crystalline silicon (111) surfaces onto which are grafted either mannosyl moieties or a mixture of mannose and spacer alcohol molecules to provide "diluted" surfaces.
View Article and Find Full Text PDFSi thin films obtained by plasma enhanced chemical vapor deposition (PECVD) were used to investigate chemical and morphological modifications induced by lithiation potential and cycling. These modifications were thoughtfully analyzed by time-of-flight secondary ion mass spectrometry (ToF-SIMS) depth profiling, which allows to distinguish the surface and bulk processes related to the formation of the solid electrolyte interphase (SEI) layer, and Li-Si alloying, respectively. The main results are a volume expansion/shrinkage and a dynamic behavior of the SEI layer during the single lithiation/delithiation process and multicycling.
View Article and Find Full Text PDFVarious poly(ethylene glycol) monomethyl ether moieties were grafted onto hydrogenated silicon surfaces in order to investigate the influence of the molecular design on the antifouling performance of such coatings. The grafted chains were either oligo(ethylene oxide) chains (EG)(n)OMe bound to silicon via Si-O-C covalent bonds, or hybrid alkyl/oligo(ethylene oxide) chains C(p)(EG)(n)OMe bound via Si-C covalent bonds (from home-synthesized precursors). Quantitative IR spectroscopy gave the molecular coverage of the grafted layers, and AFM imaging demonstrated that a proper surfactinated rinse yields C(p)(EG)(n)OMe layers free of unwanted residues.
View Article and Find Full Text PDFIn this work, a Glycyl-Histidyl-Glycyl-Histidine (GlyHisGlyHis) peptide is covalently anchored to the porous silicon PSi surface using a multi-step reaction scheme compatible with the mild conditions required for preserving the probe activity. In a first step, alkene precursors are grafted onto the hydrogenated PSi surface using the hydrosilylation route, allowing for the formation of a carboxyl-terminated monolayer which is activated by reaction with N-hydroxysuccinimide in the presence of a peptide-coupling carbodiimide N-ethyl-N'-(3-dimethylaminopropyl)-carbodiimide and subsequently reacted with the amino linker of the peptide to form a covalent amide bond. Infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy are used to investigate the different steps of functionalization.
View Article and Find Full Text PDFControlled electrochemical formation of porous silica can be realized in dilute aqueous, neutral-pH, fluoride medium. Formation of a porous film is initiated by sweeping the potential applied to silicon to values higher than 20 V. Film formation, reaching a steady state, may be pursued in a wide range of potentials, including lower potentials.
View Article and Find Full Text PDFMonolayers of metal complexes were covalently attached to the surface of lamellar SPR interfaces (Ti/Ag/a-Si(0.63)C(0.37)) for binding histidine-tagged peptides with a controlled molecular orientation.
View Article and Find Full Text PDFThe use of an amorphous silicon-carbon alloy overcoating on silver nanostructures in a localized surface plasmon resonance (LSPR) sensing platform allows for decreasing the detection limit by an order of magnitude as compared to sensors based on gold nanostructures deposited on glass. In addition, silver based multilayer structures show a distinct plasmonic behaviour as compared to gold based nanostructures, which provides the sensor with an increased short-range sensitivity and a decreased long-range sensitivity.
View Article and Find Full Text PDFVersatile and highly-sensitive detection of DNA hybridization is described using metal nanostructures-enhanced fluorescence (MEF) emission intensity when fluorescently-labeled DNA oligomers are covalently immobilized on a nanometer-thin amorphous silicon-carbon layer capping the metal nanostructures. The MEF structures are formed by thermal deposition of silver, gold or silver/gold thin films on glass surfaces and post-annealing at 500 degrees C. The choice of the metal film allows for tuning the optical properties of the interface.
View Article and Find Full Text PDF